人妻丰满熟妇无码区乱com|久久婷婷午夜精品二区|一道本国产不卡视频|国产孕妇故爱A级高清片免费看

<tbody id="geoqw"></tbody>
  • <center id="geoqw"></center>
  • <menu id="geoqw"></menu>
  • <center id="geoqw"></center>
    
    <menu id="geoqw"></menu>
  • 初中數(shù)學《矩形的判定》教案設(shè)計

    時間:2021-04-07 16:50:11 數(shù)學教案 我要投稿

    初中數(shù)學《矩形的判定》教案設(shè)計

      20.2矩形的判定(2)

    初中數(shù)學《矩形的判定》教案設(shè)計

      教學目標:

      1.使學生能應(yīng)用矩形定義、判定等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學生的分析能力

      2.通過矩形判定的教學滲 透矛盾可以互相轉(zhuǎn)化的唯物辯證法思想

      教法設(shè)計:觀察、啟發(fā)、總結(jié)、提高,類比探討,討 論分析,啟 發(fā)式.

      教學重點:矩形的判定.

      教學難點:矩形的 判定及性質(zhì)的綜合應(yīng)用.

      教具學具準備:教具(一個活動的平行四邊形)

      教學步驟:

      一.復(fù)習提問:

      1.什么叫做平行四邊形?什么叫做矩形?

      2.矩形有哪些性質(zhì)?

      3.矩形與平行四邊形有什么共同之處?有什么不同之處?

      二.引入新課

      設(shè)問:1.矩形的判定.

      2.矩形是有一個角是直角的平行四 邊形,在判定一個四邊形是不是矩 形 ,首先看這個四邊形是不是平行四邊 形,再看它兩邊的夾角是不是直角,這種用“定義”判定是最重要和最基本的判定方法(這 體現(xiàn)了定義作用的雙重性、性質(zhì)和判定).除此之外,還有其它 幾種判定矩形的方法,下面就來研究這 些方法.

      方法1:有三個角是直角的四邊形是矩形.(并讓學生寫出推理過程。)

      矩形判定方法2:對角錢相等的平行四邊形是矩形.(分析判定方法2和學生 一道寫出證明過程。)

      歸納矩形判定方法(由學生小 結(jié)):

     。1)一個角是直角的平行四邊形.(2)對角線相等的平行四邊形.

      (3)有三個角是直角的四邊形.

      2 .矩形判定方法的實際應(yīng)用

      除教材中所舉的門框或矩形零件外,還可以結(jié)合生產(chǎn)生活實際說明判定矩形的實用價值.

      3.矩形知識的綜合應(yīng)用。(讓學生思考,然后師生共同完成)

      例:已知 的'對角線 , 相交于

      ,△ 是等邊三角形, ,求這個平行

      四邊形的面積(圖2).

      分析解題思路:(1)先判定 為矩形.(2)求 出 △ 的直角邊 的長.(3)計算 .

      三.小結(jié):(1)矩形的判定方法l、2都是有兩個條件:①是平行四邊形,②有一個角是直角或?qū)蔷 相等.判定方法3的兩個條件是:①是四邊形,②有三個直 角.

      矩形的判定方法有哪些?

      一個角是直角的平行四邊形

      對角線相等的平行四邊形-是矩形。

      有三個角是直角的四邊形

      (2)要注意不要不加考慮地把性質(zhì)定理的逆命題作為矩形的判定定理.

      補充例題

      例1:已知:O是矩形A BCD對角線的交點,E、F、G、H分別是OA、OB、OC、OD 上的點,AE=BF=CG=DH,

      求證:四邊形EFGH為矩形

      分析:利用對角線互相平分且相等的四邊形是矩形可以證明

      證明:∵ABCD為矩形

      AC=BD

      AC、BD互相平分于O

      AO=BO=CO=DO

      ∵AE=BF=CG=DH

      EO=FO=GO=HO

      又HF=EG

      EFGH為矩形

      例2:判斷

     。1)兩條對 角線相等四邊形是矩形()

     。2)兩條對角線相等且互相平分的四邊形是矩形()

     。3)有一個角是 直角的四邊形是矩形( )

     。4)在矩形內(nèi)部沒有和四個頂點距離相等的點()

      分析及解答:

      (1)如圖(1)四邊形ABC D中,AC=BD,但ABCD不為矩形,

      (2)對角線互相平分的四邊形即平行四邊形,對角線相等的平行四邊形為矩形

     。3)如圖(2),四邊形ABCD中,B=90,但ABCD不為矩形

      (4)矩形 對角線的交點O到四個頂點距離相等,如圖(3),

    【初中數(shù)學《矩形的判定》教案設(shè)計】相關(guān)文章:

    八年級數(shù)學知識點:矩形的判定知識點03-20

    中考幾何數(shù)學矩形復(fù)習考點12-09

    高一數(shù)學下冊《圓的方程》教案設(shè)計12-07

    高一數(shù)學《指對數(shù)的運算》教案設(shè)計12-07

    初中數(shù)學的得分技巧08-31

    初中數(shù)學的復(fù)習技巧05-11

    學習初中數(shù)學的技巧05-08

    學好初中數(shù)學的技巧05-04

    學好初中數(shù)學的訣竅12-16

    初中的數(shù)學公式12-12