初中數(shù)學(xué)教案14篇
在教學(xué)工作者開展教學(xué)活動(dòng)前,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那要怎么寫好教案呢?以下是小編為大家收集的初中數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。
初中數(shù)學(xué)教案 篇1
教學(xué)目標(biāo):
1、知識(shí)與技能:通過對(duì)多種實(shí)際問題的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗(yàn)數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識(shí)到許多實(shí)際問題可以用數(shù)學(xué)方法解決。
教學(xué)重點(diǎn):歸納一元次方程的概念
教學(xué)難點(diǎn):感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義.
教學(xué)過程:
一、情景導(dǎo)入:
我能猜出你們的年齡,相信嗎?
只要任何一個(gè)同學(xué)回答我一個(gè)問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學(xué)生說出結(jié)果,教師猜測(cè)年齡,并問:你們知道我是怎么做的嗎?
學(xué)生討論并回答
二、知識(shí)探究:
1、方程的'教學(xué)(投影演示)
小彬和小明也在進(jìn)行猜年齡游戲,我們來看一看。
找出這道題中的等量關(guān)系,列出方程.
大家觀察,這兩個(gè)式子有什么特點(diǎn)。
討論并回答:什么是方程?方程有哪些特點(diǎn)?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
。5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實(shí)際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時(shí)樹苗高為40厘米,栽種后每周樹苗長(zhǎng)高約15厘米,大約幾周后樹苗長(zhǎng)高到1米?
你能找出題中的等量關(guān)系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國(guó)人口普查統(tǒng)計(jì)數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時(shí),全國(guó)每10萬人中具有大學(xué)文化程度的人數(shù)為3611人,比1990年7月1日0時(shí)增長(zhǎng)了153.94%
1990年6月底每10萬人中約有多少人具有大學(xué)文化程度?情景三:西湖中學(xué)的體育場(chǎng)的足球場(chǎng),其周長(zhǎng)為200米,長(zhǎng)和寬之差為12米,這個(gè)足球場(chǎng)的長(zhǎng)和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點(diǎn)?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個(gè)方程中,只含有一個(gè)未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個(gè)同學(xué)能夠說一下你是怎樣列出方程的,列方程應(yīng)該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關(guān)系(2)設(shè)未知數(shù)(3)列方程
四、隨堂練習(xí)
1、投影趣味習(xí)題,
2、做一做
下面有兩道題,請(qǐng)選做一題。
(1)、請(qǐng)根據(jù)方程2X+3=21自己設(shè)計(jì)一道有實(shí)際背景的應(yīng)用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應(yīng)用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學(xué)到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學(xué)教案-你今年幾歲了搜集整理
初中數(shù)學(xué)教案 篇2
三維目標(biāo)
一、知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.
二、過程與方法
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.
三、情感態(tài)度與價(jià)值觀
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動(dòng)1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值.
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動(dòng)2
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;
、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;
、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.
因此,撬動(dòng)石頭至少需要400牛頓的力.
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時(shí),
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米.
生:也可用不等式來解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時(shí).
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:
用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長(zhǎng)越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.
活動(dòng)3
問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計(jì)意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的'函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動(dòng)4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.
設(shè)計(jì)意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評(píng).
師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.
四、課時(shí)小結(jié)
活動(dòng)5
你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計(jì)意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書設(shè)計(jì)
17.2 實(shí)際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?
設(shè)阻力為F1,阻力臂長(zhǎng)為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減。
活動(dòng)與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長(zhǎng)不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長(zhǎng)不超過40m,則它的寬應(yīng)大于等于10m。
初中數(shù)學(xué)教案 篇3
知識(shí)技能目標(biāo)
1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標(biāo)
1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題。
教學(xué)過程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的.增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);
2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。
以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。
三、實(shí)踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。
解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(diǎn)(1,—2)。
。1)求這個(gè)函數(shù)的解析式,并畫出圖象;
。2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;
。2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
(2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,
點(diǎn)A的坐標(biāo)為。
點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;
例4已知函數(shù)為反比例函數(shù)。
。1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
(2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
(3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時(shí),y最大值=;
當(dāng)x=—3時(shí),y最小值=。
所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。
例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長(zhǎng)的函數(shù)關(guān)系式;
(2)寫出自變量x的取值范圍;
。3)畫出函數(shù)的圖象。
解(1)因?yàn)?00=5xy,所以。
(2)x>0。
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
五、檢測(cè)反饋
1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
。1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
。1)y和x的函數(shù)關(guān)系式;
。2)當(dāng)時(shí),y的值;
。3)當(dāng)x取何值時(shí),?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點(diǎn)A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0
初中數(shù)學(xué)教案 篇4
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過程,在此過程中加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過驗(yàn)證過程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識(shí)之間內(nèi)在聯(lián)系,每一部分知識(shí)并不是孤立的。
3.通過豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問題與合作交流方法與經(jīng)驗(yàn)。
4.通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動(dòng)增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn)1.通過綜合運(yùn)用已有知識(shí)解決問題的過程,加深對(duì)因式分解、整式運(yùn)算、面積等的'認(rèn)識(shí)。
2.通過拼圖驗(yàn)證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗(yàn)。
難點(diǎn)利用數(shù)形結(jié)合的方法驗(yàn)證公式
教學(xué)方法動(dòng)手操作,合作探究課型新授課教具投影儀
教師活動(dòng)學(xué)生活動(dòng)
情景設(shè)置:
你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個(gè)圖形拼成一個(gè)新的圖形,再通過圖形面積的計(jì)算,常常可以得到一些有用的式子。美國(guó)第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長(zhǎng)分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長(zhǎng)方形,計(jì)算它的面積,并寫出相應(yīng)的等式;
。2)任意寫出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2
試用拼一個(gè)長(zhǎng)方形的方法,把這個(gè)二次三項(xiàng)式因式分解。
這個(gè)問題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過程中進(jìn)行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
。ń處煈(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對(duì)學(xué)生所說的進(jìn)行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
。╝+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對(duì)于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)第95頁第3題
板書設(shè)計(jì)
復(fù)習(xí)例1板演
………………
………………
……例2……
………………
………………
教學(xué)后記
初中數(shù)學(xué)教案 篇5
知識(shí)技能
會(huì)通過“移項(xiàng)”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會(huì)一元一次方程是刻畫實(shí)際問題的有效數(shù)學(xué)模型。進(jìn)一步發(fā)展符號(hào)意識(shí)。
2.通過一元一次方程的學(xué)習(xí),體會(huì)方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識(shí)。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實(shí)驗(yàn)計(jì)算、交流等活動(dòng),激發(fā)求知欲,體驗(yàn)探究發(fā)現(xiàn)的快樂。
教學(xué)重點(diǎn)
建立方程解決實(shí)際問題,會(huì)通過移項(xiàng)解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點(diǎn)
分析實(shí)際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動(dòng)一 知識(shí)回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時(shí),方程的解一般化成什么形式?這些題你采用了那些變形或運(yùn)算?
教師:前面我們學(xué)習(xí)了簡(jiǎn)單的一元一次方程的解法,下面請(qǐng)大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨(dú)立完成,板演2、4題,板演同學(xué)講解所用到的變形或運(yùn)算,共同講評(píng)。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨(dú)立思考、回答交流。
本次活動(dòng)中教師關(guān)注:
。1)學(xué)生能否準(zhǔn)確理解運(yùn)用等式性質(zhì)和合并同列項(xiàng)求解方程。
。2)學(xué)生對(duì)解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個(gè)環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項(xiàng)對(duì)方程進(jìn)行變形,再現(xiàn)等式兩邊同時(shí)加上(或減去)同一個(gè)數(shù)、兩邊同時(shí)乘以(除以,不為0)同一個(gè)數(shù)、合并同類項(xiàng)等運(yùn)算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動(dòng)二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個(gè)問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗(yàn)?zāi)愦蛩阍趺醋觯?/p>
。▽W(xué)生嘗試提問)
學(xué)生:讀題,審題,獨(dú)立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨(dú)立回答)
2.設(shè)未知數(shù):設(shè)這個(gè)班有x名學(xué)生。
3.列代數(shù)式:x參與運(yùn)算,探索運(yùn)算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個(gè)定值,表示它的兩個(gè)等式相等.(學(xué)生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結(jié)提問:通過列方程解決實(shí)際問題分析時(shí),要經(jīng)歷那些步驟?書寫時(shí)呢?
教師提問1:這個(gè)方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(xiàng)(3x與4x)和不含字母的常數(shù)項(xiàng)(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項(xiàng),等號(hào)兩邊同減去4x,為使方程的左邊沒有常數(shù)項(xiàng),等號(hào)兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項(xiàng)”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項(xiàng),含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于x=a的.形式。
教師提問5:解這個(gè)方程,我們經(jīng)歷了那些步驟?列方程時(shí)找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
(1)學(xué)生對(duì)列方程解決實(shí)際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動(dòng)中,體驗(yàn)探究發(fā)現(xiàn)成功的快樂。
活動(dòng)三 解法運(yùn)用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個(gè)方程時(shí),第一步我們先干什么?
學(xué)生講解,獨(dú)立完成,板演。
提問:“移項(xiàng)”是注意什么?
學(xué)生:變號(hào)。
教師關(guān)注:學(xué)生“移項(xiàng)”時(shí)是否能夠注意變號(hào)。
通過這個(gè)例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗(yàn)“移項(xiàng)”這種變形在解方程中的作用,規(guī)范解題步驟。
活動(dòng)四 鞏固提高
1.第91頁練習(xí)(1)(2)
2.某貨運(yùn)公司要用若干輛汽車運(yùn)送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運(yùn)送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時(shí)走6千米,則比規(guī)定時(shí)間遲到1小時(shí);若每小時(shí)走8千米,則比規(guī)定時(shí)間早到0.5小時(shí)。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨(dú)立完成,用實(shí)物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計(jì)算中可能出現(xiàn)的錯(cuò)誤。
2.x系數(shù)為分?jǐn)?shù)時(shí),可用乘的辦法,化系數(shù)為1。
3.用實(shí)物投影展示學(xué)困生的完成情況,進(jìn)行評(píng)價(jià)、鼓勵(lì)。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對(duì)解方程步驟的掌握情況和可能出現(xiàn)的計(jì)算錯(cuò)誤。
2、3題的重點(diǎn)是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗(yàn)解決實(shí)際問題,達(dá)到鞏固提高的目的。
活動(dòng)五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點(diǎn)利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識(shí)進(jìn)行小結(jié)。
學(xué)生進(jìn)行總結(jié)歸納、回答交流,相互完善補(bǔ)充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點(diǎn)內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對(duì)本節(jié)所學(xué)知識(shí)進(jìn)行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運(yùn)用。
布置作業(yè):
第93頁第3題
初中數(shù)學(xué)教案 篇6
問題描述:
初中數(shù)學(xué)教學(xué)案例
初中的,隨便那個(gè)年級(jí).20xx字.案例和反思
1個(gè)回答 分類:數(shù)學(xué) 20xx-11-30
問題解答:
我來補(bǔ)答
2.3 平行線的性質(zhì)
一、教材分析:
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(五四學(xué)制)七年級(jí)上冊(cè)第2章 第3節(jié) 平行線的性質(zhì),它是平行線及直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分.
二、教學(xué)目標(biāo):
知識(shí)與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題.
數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識(shí)和創(chuàng)新精神.
情感態(tài)度與價(jià)值觀:在探究活動(dòng)中,讓學(xué)生獲得親自參與研究的情感體驗(yàn),從而增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和勇于探索、鍥而不舍的精神.
三、教學(xué)重、難點(diǎn):
重點(diǎn):平行線的性質(zhì)
難點(diǎn):“性質(zhì)1”的探究過程
四、教學(xué)方法:
“引導(dǎo)發(fā)現(xiàn)法”與“動(dòng)像探索法”
五、教具、學(xué)具:
教具:多媒體課件
學(xué)具:三角板、量角器.
六、教學(xué)媒體:大屏幕、實(shí)物投影
七、教學(xué)過程:
。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思:
1.播放一組幻燈片.內(nèi)容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經(jīng)常會(huì)遇到平行線,你能說出直線平行的條件嗎?
學(xué)生活動(dòng):
思考回答.①同位角相等兩直線平行;②內(nèi)錯(cuò)角相等兩直線平行;③同旁內(nèi)角互補(bǔ)兩直線平行;
教師:首先肯定學(xué)生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系呢?
引出課題——平行線的性質(zhì).
。ǘ⿺(shù)形結(jié)合,探究性質(zhì)
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標(biāo)出8個(gè)角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結(jié)果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數(shù)
數(shù)量關(guān)系
學(xué)生活動(dòng):畫圖——度量——填表——猜想
結(jié)論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學(xué)生:探究、討論,最后得出結(jié)論:仍然成立.
2.教師用《幾何畫板》課件驗(yàn)證猜想
3.性質(zhì)1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養(yǎng)創(chuàng)新
問題三:請(qǐng)判斷內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系?
學(xué)生活動(dòng):獨(dú)立探究——小組討論——成果展示.
教師活動(dòng):引導(dǎo)學(xué)生說理.
因?yàn)閍‖b 因?yàn)閍‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質(zhì)2 兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等.
(兩直線平行,內(nèi)錯(cuò)角相等)
性質(zhì)3 兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ).
。▋芍本平行,同旁內(nèi)角互補(bǔ))
。ㄋ模⿲(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
、偃簟1 = 110°,則∠2 = °.理由:.
、谌簟1 = 110°,則∠3 = °.理由:.
③若∠1 = 110°,則∠4 = °.理由:.
。2)如圖,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
。–)∠1=∠4 (D)∠3=∠4
。3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
。ˋ) 180°(B)270° (C)360° (D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時(shí),∠2= .
學(xué)生提問,并找出回答問題的同學(xué).
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
。ㄎ澹└爬ù鎯(chǔ)(小結(jié))
1.平行線的性質(zhì)1、2、3;
2.用“運(yùn)動(dòng)”的觀點(diǎn)觀察數(shù)學(xué)問題;
3.用數(shù)形結(jié)合的方法來解決問題.
。┳鳂I(yè) 第69頁 2、4、7.
八、教學(xué)反思:
①教的轉(zhuǎn)變:本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者.在引導(dǎo)學(xué)生畫圖、測(cè)量、發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地、動(dòng)態(tài)地展示同位角的'關(guān)系,激發(fā)學(xué)生自覺地探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣.
②學(xué)的轉(zhuǎn)變:學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué).本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)的層面上,而是站在研究者的角度深入其境.
、壅n堂氛圍的轉(zhuǎn)變:整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維活動(dòng)減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值.
初中數(shù)學(xué)教案 篇7
教學(xué)目標(biāo):
1.在具體情境中了解鄰補(bǔ)角、對(duì)頂角,能找出圖形中的一個(gè)角的鄰補(bǔ)角和對(duì)頂角.
2.理解對(duì)頂角相等,并能運(yùn)用它解決一些問題.
重點(diǎn):
鄰補(bǔ)角、對(duì)頂角的概念,對(duì)頂角的性質(zhì)與應(yīng)用.
難點(diǎn):
理解對(duì)頂角相等的性質(zhì)的探索.
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
引導(dǎo)語:
我們生活的世界中,蘊(yùn)涵著大量的相交線和平行線.
本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì),研究平行線的性質(zhì)和平行線的判定以及圖形的平移問題.
二、嘗試活動(dòng),探索新知
教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.
教師提出問題:剪布時(shí),用力握緊把手,發(fā)生了什么變化?進(jìn)而使什么也發(fā)生了變化?
學(xué)生觀察、思考、回答,得出:
握緊把手時(shí),隨著兩個(gè)把手之間的角逐漸變小,剪刀刀刃之間的角相應(yīng)變。绻淖冇昧Ψ较,隨著兩個(gè)把手之間的角逐漸變大,剪刀刀刃之間的角也相應(yīng)變大.
教師提問:我們可以把剪刀抽象成什么簡(jiǎn)單的圖形?
學(xué)生回答:畫成兩條相交的直線,學(xué)生畫直線AB、CD相交于點(diǎn)O,并說出圖中4個(gè)角.
教師提問:兩兩相配共能組成幾對(duì)角?各對(duì)角的位置關(guān)系如何?根據(jù)不同的位置怎么將它們分類?
學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各對(duì)角的度數(shù)有什么關(guān)系?(學(xué)生得出結(jié)論:相鄰的兩個(gè)角互補(bǔ),對(duì)頂?shù)膬蓚(gè)角相等)
學(xué)生根據(jù)觀察和度量完成下表:
兩條直線相交、所形成的角、分類、位置關(guān)系、數(shù)量關(guān)系
教師提問:
如果改變∠AOC的大小,會(huì)改變它與其他角的位置關(guān)系和數(shù)量關(guān)系嗎?
學(xué)生思考回答:
只會(huì)改變數(shù)量關(guān)系而不會(huì)改變位置關(guān)系.
師生共同定義鄰補(bǔ)角、對(duì)頂角:
有一條公共邊,而且另一邊互為反向延長(zhǎng)線的兩個(gè)角叫做鄰補(bǔ)角.
如果兩個(gè)角有一個(gè)公共頂點(diǎn),而且一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,那么這兩個(gè)角叫做對(duì)頂角.
教師提問:
你同意下列說法嗎?如果錯(cuò)誤,如何訂正?
1.鄰補(bǔ)角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補(bǔ)”就是“互補(bǔ)”,就是這兩個(gè)角的另一條邊在同一條直線上.
2.鄰補(bǔ)角可看成是平角被過它的頂點(diǎn)的一條射線分成的兩個(gè)角.
3.鄰補(bǔ)角是互補(bǔ)的兩個(gè)角,互補(bǔ)的兩個(gè)角也是鄰補(bǔ)角.
學(xué)生思考回答:1、2是對(duì)的,3是錯(cuò)的.
第3個(gè)應(yīng)改成:鄰補(bǔ)角是互補(bǔ)的兩個(gè)角,互補(bǔ)的`兩個(gè)角不一定是鄰補(bǔ)角.
教師讓學(xué)生說一說在學(xué)習(xí)對(duì)頂角的概念后,通過實(shí)際操作獲得的直觀體驗(yàn).
教師把說理過程規(guī)范地板書:
在右圖中,∠AOC的鄰補(bǔ)角是∠BOC和∠AOD,所以∠AOC與∠BOC互補(bǔ),∠AOC與∠AOD互補(bǔ),根據(jù)“同角的補(bǔ)角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.
教師板書對(duì)頂角的性質(zhì):
對(duì)頂角相等.
強(qiáng)調(diào)對(duì)頂角的概念與對(duì)頂角的性質(zhì)不能混淆:
對(duì)頂角的概念是確定兩角的位置關(guān)系,對(duì)頂角的性質(zhì)是確定互為對(duì)頂角的兩角的數(shù)量關(guān)系.
三、例題講解
【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).
【答案】 由鄰補(bǔ)角的定義,得∠2=180°-∠1=180°-40°=140°;由對(duì)頂角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、鞏固練習(xí)
1.判斷下列圖中是否存在對(duì)頂角.
2.按要求完成下列各題.
(1)兩條直線相交,構(gòu)成哪兩種特殊位置關(guān)系的角?指出下圖中具有這兩種位置關(guān)系的角.
eq o(sup7(,圖(1)) ,圖(2))
(2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關(guān)系如何?
【答案】
1.都不存在對(duì)頂角.
2.(1)對(duì)頂角,鄰補(bǔ)角.
對(duì)頂角:∠AOC和∠BOD,∠AOD和∠BOC.
鄰補(bǔ)角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、課堂小結(jié)
教師引導(dǎo)學(xué)生進(jìn)行本節(jié)課的小結(jié)并強(qiáng)調(diào)對(duì)頂角的概念與對(duì)頂角的性質(zhì)不能混淆:對(duì)頂角的概念是確定兩角的位置關(guān)系,對(duì)頂角的性質(zhì)是確定互為對(duì)頂角的兩角的數(shù)量關(guān)系.
教學(xué)反思
通過本節(jié)課的學(xué)習(xí),大部分學(xué)生能積極主動(dòng)地參與到學(xué)習(xí)活動(dòng)中來,并能積極主動(dòng)地提出各類問題并解決問題,達(dá)到了基本的教學(xué)效果.但是由于對(duì)新概念的理解不是很深刻,所以在應(yīng)用方面存在不足,針對(duì)這一情況,教師應(yīng)選擇典型的例題,詳細(xì)講解,指導(dǎo)學(xué)生探求解題的思路和方法,加深對(duì)概念的理解,做到熟練的應(yīng)用。
初中數(shù)學(xué)教案 篇8
教學(xué)目標(biāo)
(一)知識(shí)認(rèn)知要求
1、回顧收集數(shù)據(jù)的方式、
2、回顧收集數(shù)據(jù)時(shí),如何保證樣本的代表性、
3、回顧頻率、頻數(shù)的概念及計(jì)算方法、
4、回顧刻畫數(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量:極差、方差、標(biāo)準(zhǔn)差的概念及計(jì)算公式、
5、能利用計(jì)算器或計(jì)算機(jī)求一組數(shù)據(jù)的算術(shù)平均數(shù)、
(二)能力訓(xùn)練要求
1、熟練掌握本章的知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)、
2、經(jīng)歷數(shù)據(jù)的收集與處理的過程,發(fā)展初步的統(tǒng)計(jì)意識(shí)和數(shù)據(jù)處理能力、
3、經(jīng)歷調(diào)查、統(tǒng)計(jì)等活動(dòng),在活動(dòng)中發(fā) 展學(xué)生解決問題的能力、
(三)情感與價(jià)值觀要求
1、通過對(duì)本章內(nèi)容的回顧與思考,發(fā)展學(xué) 生用數(shù)學(xué)的意識(shí)、
2、在活動(dòng)中培養(yǎng)學(xué)生團(tuán)隊(duì)精神、
教學(xué)重點(diǎn)
1、建立本章的知識(shí)框架圖、
2、體會(huì)收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng) 計(jì)量在實(shí)際情境中的意義和應(yīng)用、
教學(xué)難點(diǎn)
收集數(shù)據(jù)的方式、抽樣時(shí)保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計(jì)量在不同情境中的應(yīng)用、
教學(xué)過程
一、導(dǎo)入新課
本章的內(nèi)容已全部學(xué)完、現(xiàn)在如何讓你調(diào)查一個(gè)情況、并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報(bào)告,我想大家現(xiàn)在心里應(yīng)該有數(shù)、
例如,我們要調(diào)查一下“上網(wǎng)吧的人的年齡”這一情況,我們應(yīng)如何操作?
先選擇調(diào)查方式,當(dāng)然這個(gè)調(diào)查應(yīng)采用抽樣調(diào)查的方式,因?yàn)槲覀儾豢赡苷{(diào)查到所有上網(wǎng)吧的人,何況也沒有必要、
同學(xué)們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計(jì)分析,然后把調(diào)查結(jié)果匯報(bào)上來,我們可以比一比,哪一個(gè)組表現(xiàn)最好?
二、講授新課
1、舉例說明收集數(shù)據(jù)的方式主要有哪幾種類型、
2、抽樣調(diào)查時(shí),如何保證樣本的代表性?舉例說明、
3、舉出與頻數(shù)、頻率有關(guān)的幾個(gè)生活實(shí)例?
4、刻畫數(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量有 哪些?它們有什么作用?舉例說明、
針對(duì)上面的幾個(gè)問題,同學(xué)們先獨(dú) 立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來回答、
。ń處熆蓞⑴c到學(xué)生的討論中,發(fā)現(xiàn)同學(xué)們前面知識(shí)掌握不好的地方,及時(shí)補(bǔ)上)、
收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查、
例如:調(diào)查我校八年級(jí)同學(xué)每天做家庭作業(yè)的時(shí)間,我們就可以用普查的形式、
在這次調(diào)查中,總體:我校八年級(jí)全體學(xué)生每天做家庭作業(yè)的時(shí)間;個(gè)體:我校八年級(jí)每個(gè)學(xué)生每天做家庭作業(yè)的時(shí)間、
用普查的方式可以直接獲得總體情況、但有時(shí)總體中個(gè)體數(shù)目太多,普查的工作量較大;有時(shí)受客觀條件的限制,無法對(duì)所有個(gè)體進(jìn)行普查;有時(shí)調(diào)查具有破壞性,不允許普查,此時(shí)可用抽樣調(diào)查、
例如把上面問題改成“調(diào)查全國(guó)八年級(jí)同學(xué)每天做家庭作業(yè)的時(shí)間”,由于個(gè)體數(shù)目太多,普查的工作量也較大,此時(shí)就采取抽樣調(diào)查,從總體中抽取一個(gè)樣本,通過樣本的特征數(shù)字來估計(jì)總體,例如平均數(shù)、中位數(shù)、眾數(shù) 、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因?yàn)橹?有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會(huì)失去可靠性和準(zhǔn)確性、
例如對(duì)我們班里某門學(xué)科的成績(jī)情況,有時(shí)不僅知道平均成績(jī),還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時(shí),我們只要看一下每個(gè)學(xué)生的成績(jī)落在哪一個(gè)分?jǐn)?shù)段,落在這個(gè)分?jǐn)?shù)段的分?jǐn)?shù)有幾個(gè),表明數(shù)據(jù)落在這個(gè)小組的頻數(shù)就是多少,數(shù)據(jù)落在這個(gè)小組的頻率就是頻數(shù)與數(shù)據(jù)總個(gè)數(shù)的商、
刻畫數(shù)據(jù)波動(dòng)的統(tǒng)計(jì)量有極差、方差、標(biāo)準(zhǔn)差、它們是用來描述一組數(shù)據(jù)的穩(wěn)定性的、一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定、
例如:某農(nóng)科所在8個(gè)試驗(yàn)點(diǎn),對(duì)甲、乙兩種玉米進(jìn)行對(duì)比試驗(yàn),這兩種玉米在各試驗(yàn)點(diǎn)的畝產(chǎn)量如下(單位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在這個(gè)試驗(yàn)點(diǎn)甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩(wěn)定、
還可以用方差來比較哪一種玉米穩(wěn)定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的'產(chǎn)量較穩(wěn)定、
三、建立知識(shí)框架圖
通 過剛才的幾個(gè)問題回顧思考了我們這一章的重點(diǎn)內(nèi)容,下面構(gòu)建本章的知識(shí)結(jié)構(gòu)圖、
四、隨堂練習(xí)
例1一家電腦生產(chǎn)廠家在某城市三個(gè)經(jīng)銷本廠產(chǎn)品的大商場(chǎng)調(diào)查,產(chǎn)品的銷量占這三個(gè) 大商場(chǎng)同類產(chǎn)品銷量的40%、由此在廣告中宣傳,他們的產(chǎn)品在國(guó)內(nèi)同類產(chǎn)品的銷售量占40%、請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統(tǒng)計(jì)知識(shí),作出科學(xué)的判斷, 同時(shí)運(yùn) 用統(tǒng)計(jì)原理給予準(zhǔn)確的解釋、因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說他們的產(chǎn)品在國(guó)內(nèi)同類產(chǎn)品的銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國(guó)上下眾志成城抗擊“非典” 的斗爭(zhēng)中,疫情變化牽動(dòng)著全國(guó)人民的心 、請(qǐng)根據(jù)下面的疫情統(tǒng)計(jì)圖表回答問題:
。1)圖10是5月11日至5月29日全國(guó)疫情每天新增數(shù)據(jù)統(tǒng)計(jì)走勢(shì)圖,觀察后回答:
、倜刻煨略龃_診病例與新增疑似病例人數(shù)之和超過100人的天數(shù)共有__________天;
、谠诒绢}的統(tǒng)計(jì)中,新增確診病例的人數(shù)的中位數(shù)是___________;
、郾绢}在對(duì)新增確診病例的統(tǒng)計(jì)中,樣本是__________,樣本容量是__________、
。2)下表是我國(guó)一段時(shí)間內(nèi)全國(guó)確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計(jì)表、(按人數(shù)分組)
、100人以下的分組組距是________;
、谔顚懕窘y(tǒng)計(jì)表中未完成的空格;
、墼诮y(tǒng)計(jì)的這段時(shí)期中,每天新增確診
病例人數(shù)在80人以下的天數(shù)共有_________天、
解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數(shù) 19
。2)①10人 ②11 40 0、125 0、325 ③25
五.課時(shí)小結(jié)
這節(jié)課我們通過回顧與思考這一章的重點(diǎn)內(nèi)容,共同建立的知識(shí)框架圖,并進(jìn)一步用統(tǒng)計(jì)的思想和知識(shí)解決問題,作出決策、
六.課后作業(yè):
七.活動(dòng)與探究
從魚塘捕得同時(shí)放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質(zhì)量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計(jì)這240尾魚的總質(zhì)量大約是
A、300克 B、360千克C、36千克 D、30千克
初中數(shù)學(xué)教案 篇9
、俳Y(jié)合你對(duì)一元一次方程中的一次的理解,說一說你對(duì)一次函數(shù)中的“一次”的理解. ②k可以是怎樣的數(shù)?
③你怎樣認(rèn)識(shí)一次函數(shù)和正比例函數(shù)的關(guān)系?
一個(gè)常數(shù)b的'和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數(shù),k≠0 )的函數(shù),叫做一次函數(shù), 當(dāng)
b=0時(shí),
Y=kx+b即Y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)。
例1、下列函數(shù)中,Y是X的一次函數(shù)的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學(xué)生獨(dú)立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關(guān)系式,并判
解釋與應(yīng)用
斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?①汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間(時(shí))之間的關(guān)系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關(guān)系:③一棵樹現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹的高度y(厘米)之間的關(guān)系式
初中數(shù)學(xué)教案 篇10
教學(xué)目標(biāo)
1.知識(shí)與技能
能運(yùn)用運(yùn)算律探究去括號(hào)法則,并且利用去括號(hào)法則將整式化簡(jiǎn).
2.過程與方法
經(jīng)歷類比帶有括號(hào)的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號(hào)時(shí)的符號(hào)變化的規(guī)律,歸納出去括號(hào)法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
3.情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動(dòng)探究、合作交流的意識(shí),嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):去括號(hào)法則,準(zhǔn)確應(yīng)用法則將整式化簡(jiǎn).
2.難點(diǎn):括號(hào)前面是“-”號(hào)去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)變號(hào)容易產(chǎn)生錯(cuò)誤.
3.關(guān)鍵:準(zhǔn)確理解去括號(hào)法則.
教具準(zhǔn)備
投影儀.
教學(xué)過程
一、新授
利用合并同類項(xiàng)可以把一個(gè)多項(xiàng)式化簡(jiǎn),在實(shí)際問題中,往往列出的式子含有括號(hào),那么該怎樣化簡(jiǎn)呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時(shí),那么它通過非凍土地段的時(shí)間為(t-0.5)小時(shí),于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長(zhǎng)為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號(hào),它們應(yīng)如何化簡(jiǎn)?
思路點(diǎn)撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運(yùn)算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:
利用分配律,可以去括號(hào),合并同類項(xiàng),得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡(jiǎn)帶有括號(hào)的整式,首先應(yīng)先去括號(hào).
上面兩式去括號(hào)部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號(hào)時(shí)符號(hào)變化的規(guī)律嗎?
思路點(diǎn)撥:鼓勵(lì)學(xué)生通過觀察,試用自己的語言敘述去括號(hào)法則,然后教師板書(或用屏幕)展示:
如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同;
如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的`符號(hào)與原來的符號(hào)相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號(hào)去掉,得:
+(x-3)=x-3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都沒有變號(hào))
-(x-3)=-x+3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都改變了符號(hào))
去括號(hào)規(guī)律要準(zhǔn)確理解,去括號(hào)應(yīng)對(duì)括號(hào)的每一項(xiàng)的符號(hào)都予考慮,做到要變都變;要不變,則誰也不變;另外,括號(hào)內(nèi)原有幾項(xiàng)去掉括號(hào)后仍有幾項(xiàng).
二、范例學(xué)習(xí)
例1.化簡(jiǎn)下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點(diǎn)撥:講解時(shí),先讓學(xué)生判定是哪種類型的去括號(hào),去括號(hào)后,要不要變號(hào),括號(hào)內(nèi)的每一項(xiàng)原來是什么符號(hào)?去括號(hào)時(shí),要同時(shí)去掉括號(hào)前的符號(hào).為了防止錯(cuò)誤,題(2)中-3(a2-2b),先把3乘到括號(hào)內(nèi),然后再去括號(hào).
解答過程按課本,可由學(xué)生口述,教師板書.
例2.兩船從同一港口同時(shí)出發(fā)反向而行,甲船順?biāo)掖嫠?兩船在靜水中的速度都是50千米/時(shí),水流速度是a千米/時(shí).
(1)2小時(shí)后兩船相距多遠(yuǎn)?
(2)2小時(shí)后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.
思路點(diǎn)撥:根據(jù)船順?biāo)叫械乃俣?船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時(shí),乙船速度為(50-a)千米/時(shí),2小時(shí)后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時(shí)出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號(hào)時(shí)強(qiáng)調(diào):括號(hào)內(nèi)每一項(xiàng)都要乘以2,括號(hào)前是負(fù)因數(shù)時(shí),去掉括號(hào)后,括號(hào)內(nèi)每一項(xiàng)都要變號(hào).為了防止出錯(cuò),可以先用分配律將數(shù)字2與括號(hào)內(nèi)的各項(xiàng)相乘,然后再去括號(hào),熟練后,再省去這一步,直接去括號(hào).
三、鞏固練習(xí)
1.課本第68頁練習(xí)1、2題.
2.計(jì)算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點(diǎn)撥:一般地,先去小括號(hào),再去中括號(hào).
四、課堂小結(jié)
去括號(hào)是代數(shù)式變形中的一種常用方法,去括號(hào)時(shí),特別是括號(hào)前面是“-”號(hào)時(shí),括號(hào)連同括號(hào)前面的“-”號(hào)去掉,括號(hào)里的各項(xiàng)都改變符號(hào).去括號(hào)規(guī)律可以簡(jiǎn)單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號(hào)前帶有數(shù)字因數(shù)時(shí),這個(gè)數(shù)字要乘以括號(hào)內(nèi)的每一項(xiàng),切勿漏乘某些項(xiàng).
五、作業(yè)布置
1.課本第71頁習(xí)題2.2第2、3、5、8題.
2.選用課時(shí)作業(yè)設(shè)計(jì).
初中數(shù)學(xué)教案 篇11
1.知識(shí)結(jié)構(gòu)
2.重點(diǎn)和難點(diǎn)分析
重點(diǎn):本節(jié)的重點(diǎn)是平行四邊形的概念和性質(zhì).雖然平行四邊形的概念在小學(xué)學(xué)過,但對(duì)于概念本質(zhì)屬性的理解并不深刻,為了加深學(xué)生對(duì)概念的理解,為以后學(xué)習(xí)特殊的平行四邊形打下基礎(chǔ),所以教師不要忽視平行四邊形的概念教學(xué).平行四邊形的性質(zhì)是以后證明四邊形問題的基礎(chǔ),也是學(xué)好全章的關(guān)鍵.尤其是平行四邊形性質(zhì)定理的推論,推論的應(yīng)用有兩個(gè)條件:
一個(gè)是夾在兩條平行線間;
一個(gè)是平行線段,具備這兩個(gè)條件才能得出一個(gè)結(jié)論平行線段相等,缺少任何一個(gè)條件結(jié)論都不成立,這也是學(xué)生容易犯錯(cuò)的地方,教師要反復(fù)強(qiáng)調(diào).
難點(diǎn):本節(jié)的難點(diǎn)是平行四邊形性質(zhì)定理的靈活應(yīng)用.為了能熟練的應(yīng)用性質(zhì)定理及其推論,要把性質(zhì)定理和推論的條件和結(jié)論給學(xué)生講清楚,哪幾個(gè)條件,決定哪個(gè)結(jié)論,如何用數(shù)學(xué)符號(hào)表示即書寫格式,都要在講練中反復(fù)強(qiáng)化.
3.教法建議
(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調(diào)動(dòng)學(xué)生的積極性.自己設(shè)計(jì)了一個(gè)動(dòng)畫,建議老師們用它作為本節(jié)的引入,既可以激發(fā)學(xué)生的'學(xué)習(xí)興趣,又可以激活學(xué)生的思維.
(2)在生產(chǎn)或生活中,平行四邊形是常見圖形之一,教師可以多給學(xué)生提供一些平行四邊形的圖片,增加學(xué)生的感性認(rèn)識(shí),然后,讓他們自己總結(jié)出平行四邊形的定義,教師最后做總結(jié).平行四邊形是特殊的四邊形,要判定一個(gè)四邊形是不是平行四邊形,要判斷兩點(diǎn):首先是四邊形,然后四邊形的兩組對(duì)邊分別平行.平行四邊形的定義既是平行四邊形的一個(gè)判定方法,又是平行四邊形的一個(gè)性質(zhì).
。3)對(duì)于教師來說講課固然重要,但講完課后有目的的強(qiáng)化訓(xùn)練也是不可缺少的,通過做題,幫助學(xué)生更好的理解所講內(nèi)容,也就是我們平時(shí)說的要反思回顧,總結(jié)深化.
平行四邊形及其性質(zhì)第一課時(shí)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.
2.掌握平行四邊形的性質(zhì)定理1、2.
3.并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
。ǘ┠芰τ(xùn)練點(diǎn)
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉(zhuǎn)化思想.
2.通過推導(dǎo)平行四邊形的性質(zhì)定理的過程,培養(yǎng)學(xué)生的推導(dǎo)、論證能力和邏輯思維能力.
。ㄈ┑掠凉B透點(diǎn)
通過要求學(xué)生書寫規(guī)范,培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng).
(四)美育滲透點(diǎn)
通過學(xué)習(xí),滲透幾何方法美和幾何語言美及圖形內(nèi)在美和結(jié)構(gòu)美
二、學(xué)法引導(dǎo)
閱讀、思考、講解、分析、轉(zhuǎn)化
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平行四邊形性質(zhì)定理的應(yīng)用
2.教學(xué)難點(diǎn):正確理解兩條平行線間的距離的概念和運(yùn)用性質(zhì)定理2的推論;在計(jì)算或證明中綜合應(yīng)用本節(jié)前一章的知識(shí).
3.疑點(diǎn)及解決辦法:關(guān)于性質(zhì)定理2的推論;兩點(diǎn)的距離,點(diǎn)到直線的距離,兩平行直線中間的距離的區(qū)別與聯(lián)系,注重對(duì)概念的教學(xué),使學(xué)生深刻理解上述概念,搞清它們之間的關(guān)系;平行四邊形的高有關(guān)問題.
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
教具(做兩個(gè)全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)提問,學(xué)習(xí)思考口答;教師設(shè)疑引思,學(xué)生討論分析;師生共同總結(jié)結(jié)論,教師示范講解,學(xué)生達(dá)標(biāo)練習(xí)
第一課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫做四邊形?什么叫四邊形的一組對(duì)邊?
2.四邊形的兩組對(duì)邊在位置上有幾種可能?
。教師隨著學(xué)生回答畫出圖1)
圖1
【引入新課】
在四邊形中,我們常見的實(shí)用價(jià)值最大的就是平行四邊形,如汽車的防護(hù)鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質(zhì)呢?這是這節(jié)課研究的主要內(nèi)容(寫出課題).
【講解新課】
1.平行四邊形的定義:兩組對(duì)邊分別平行的四邊形叫做平行四邊形.
注意:一個(gè)四邊形必須具備有兩組對(duì)邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對(duì)邊分別平行”的一個(gè)四邊形.因此定義既是平行四邊形的一個(gè)判定方法(定義判定法)又是平行四邊形的一個(gè)性質(zhì).
2.平行四邊形的表示:平行四邊形用符號(hào)“
”表示,如圖1就是平行四邊形
,記作“
”.
align=middle>
圖1
3.平行四邊形的性質(zhì)
講解平行四邊形性質(zhì)前必須使學(xué)生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(zhì)(共性),同時(shí)它又是特殊的四邊形,當(dāng)然還有其特性(個(gè)性),下面介紹的性質(zhì)就是其特性,這是一般四邊形所不具有的.
平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等.
平行四邊形性質(zhì)定理2:平行四邊形對(duì)邊相等.
。ń叹哂脙蓚(gè)全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個(gè)定理的方法.如圖2)
圖2如圖3
所以四邊形是平行四邊形,所以.由此得到
推論:夾在兩條平行線間的平行線段相等.
圖3
要注意:必須有兩個(gè)平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4
4.平行線間的距離
從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點(diǎn)到另一條直線的距離相等,如圖5.
我們把兩條平行線中一條直線上任意一點(diǎn)到另一條直線的距離,叫做平行線的距離.
圖5
注意:(1)兩相交直線無距離可言.
。2)連結(jié)兩點(diǎn)間的線段的長(zhǎng)度叫兩點(diǎn)間的距離,從直線外一點(diǎn)到一條直線的垂線段的長(zhǎng),叫點(diǎn)到直線的距離.兩條平行線中一條直線上任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區(qū)別與聯(lián)系.
例1 已知:如圖1,
初中數(shù)學(xué)教案 篇12
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中
可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問題;通過具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識(shí)與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形
滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級(jí),還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的'認(rèn)識(shí)。
活動(dòng)3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。
效果:
學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識(shí)解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。
4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計(jì)
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
初中數(shù)學(xué)教案 篇13
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.使學(xué)生理解多項(xiàng)式的概念.
2.使學(xué)生能準(zhǔn)確地確定一個(gè)多項(xiàng)式的次數(shù)和項(xiàng)數(shù).
3.能正確區(qū)分單項(xiàng)式和多項(xiàng)式.
(二)能力訓(xùn)練點(diǎn)
通過區(qū)別單項(xiàng)式與多項(xiàng)式,培養(yǎng)學(xué)生發(fā)散思維.
(三)德育滲透點(diǎn)
在本節(jié)教學(xué)中向?qū)W生滲透數(shù)學(xué)知識(shí)來源于生活,又為生活而服務(wù)的辯證思想.
(四)美育滲透點(diǎn)
單項(xiàng)式和多項(xiàng)式在前二章,特別是第一章已有新接觸,本節(jié)課來研究多項(xiàng)式的概念可謂水到渠成,體現(xiàn)了數(shù)學(xué)的結(jié)構(gòu)美
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用對(duì)比法,以訓(xùn)練為主,注重嘗試指導(dǎo).
2.學(xué)生學(xué)法:觀察分析→多項(xiàng)式有關(guān)概念→練習(xí)鞏固
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):多項(xiàng)式的概念及單項(xiàng)式的聯(lián)系與區(qū)別.
2.難點(diǎn):多項(xiàng)式的次數(shù)的確定,以及多項(xiàng)式與單項(xiàng)式的聯(lián)系與區(qū)別.
3.疑點(diǎn):多項(xiàng)式中各項(xiàng)的符號(hào)問題.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師出示探索性練習(xí),學(xué)生分析討論得出多項(xiàng)式有關(guān)概念,教師出示鞏固性練習(xí),學(xué)生多種形式完成.
七、教學(xué)步驟
。ㄒ唬⿵(fù)習(xí)引入,創(chuàng)設(shè)情境
師:上節(jié)課我們學(xué)習(xí)了單項(xiàng)式的有關(guān)概念,同學(xué)們看下面一些問題.
。ǔ鍪就队1)
1.下列代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的請(qǐng)指出它的系數(shù)與次數(shù).
, , ,2, , , ,
2.圓的半徑為 ,則半圓的面積為_____________,半圓的總長(zhǎng)為_____________.
學(xué)生活動(dòng):回答上述兩個(gè)問題,可以進(jìn)行搶答,看誰想的全面,回答的準(zhǔn)確,教師對(duì)回答準(zhǔn)確、速度快的給予表揚(yáng)和鼓勵(lì).
【教法說明】讓學(xué)生通過1題回顧有關(guān)單項(xiàng)式的一些知識(shí)點(diǎn),再通過2題中半圓周長(zhǎng)為 很自然地引出本節(jié)內(nèi)容.
師:上述2題中,表示半圓面積的代數(shù)式是單項(xiàng)式嗎?為什么?表示半圓的周長(zhǎng)的式子呢?
學(xué)生活動(dòng):同座進(jìn)行討論,然后選代表回答.
師:誰能把1題中不是單項(xiàng)式的式子讀出來?(師做相應(yīng)板書)
學(xué)生活動(dòng):小組討論, 、 , , 對(duì)于這些代數(shù)式的結(jié)構(gòu)特點(diǎn),由小組選代表說明,若不完整,其他同學(xué)可做補(bǔ)充.
。ǘ┨剿餍轮,講授新課
師:像以上這樣的式子叫多項(xiàng)式,這節(jié)課我們就研究多項(xiàng)式,上面幾個(gè)式子都是多項(xiàng)式.
。郯鍟3.1整式(多項(xiàng)式)
學(xué)生活動(dòng):討論歸納什么叫多項(xiàng)式.可讓學(xué)生互相補(bǔ)充.
教師概括并板書
。郯鍟荻囗(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.
師:強(qiáng)調(diào)每個(gè)單項(xiàng)式的符號(hào)問題,使學(xué)生引起注意.
。ǔ鍪就队2)
練習(xí):下裂代數(shù)式 , , , , , ,
, , 中,是多項(xiàng)式的有:
___________________________________________________________.
學(xué)生活動(dòng):學(xué)生搶答以上問題,然后每個(gè)學(xué)生在練習(xí)本上寫出兩個(gè)多項(xiàng)式,同桌互相交換打分,有疑問的提出再討論.
【教法說明】通過觀察式子特點(diǎn),討論歸納多項(xiàng)式的概念,體現(xiàn)了學(xué)生的主體作用和參與意識(shí).多項(xiàng)式的概念是本節(jié)教學(xué)重點(diǎn),為使學(xué)生對(duì)概念真正理解,讓學(xué)生每個(gè)人寫出兩個(gè)多項(xiàng)式,可及時(shí)反饋學(xué)生掌握知識(shí)中存在的問題,以便及時(shí)糾正.
師:提出問題,多項(xiàng)式 、 , , 各是由幾個(gè)單項(xiàng)式相加而得到的?每個(gè)單項(xiàng)式各指的是誰?各是幾次單項(xiàng)式?引導(dǎo)學(xué)生回答,教師根據(jù)學(xué)生回答,給予肯定、否定與糾正.
師:在 中,是兩個(gè)單項(xiàng)式相加得到,就叫做二項(xiàng)式,兩個(gè)單項(xiàng)式中, 次數(shù)是1, 次數(shù)是1,最高次數(shù)是一次,所以我們說這個(gè)多項(xiàng)式的次數(shù)是一次,整個(gè)式子叫做一次二項(xiàng)式.
。郯鍟
學(xué)生活動(dòng):同桌討論,, , ,應(yīng)怎樣稱謂,然后找學(xué)生回答.
師:給予歸納,并做適當(dāng)板書:
。郯鍟
學(xué)生活動(dòng):通過上例,學(xué)生討論多項(xiàng)式的項(xiàng)、次數(shù),然后選代表回答.
根據(jù)學(xué)生回答,師歸納:
在多項(xiàng)式中,每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng),是幾個(gè)單項(xiàng)式的和就叫做幾項(xiàng)式.每一項(xiàng)包含它的符號(hào),如 中, 這一項(xiàng)不是 .多項(xiàng)式里次數(shù)最高的項(xiàng)的次數(shù),就叫做多項(xiàng)式次數(shù),即最高次項(xiàng)是幾次,就叫做幾次多項(xiàng)式,不含字母的項(xiàng)叫做常數(shù)項(xiàng).
。郯鍟
【教法說明】通過學(xué)生對(duì)以上幾個(gè)多項(xiàng)式的感知,學(xué)生對(duì)多項(xiàng)式的特片已有了一定的了解,教師可逐步引導(dǎo),讓學(xué)生自己總結(jié)歸納一些結(jié)論,以訓(xùn)練學(xué)生的口頭表達(dá)能力和歸納能力.
。ㄈ﹪L試反饋,鞏固練習(xí)
。ǔ鍪就队3)
1.填空:
2.填空:
(1) 是_________次__________項(xiàng)式; 是_________次_________項(xiàng)式; 的'常數(shù)項(xiàng)是___________.
。2) 是_________次________項(xiàng)式,最高次數(shù)是___________,最高次項(xiàng)的系數(shù)是__________,常數(shù)項(xiàng)是___________.
學(xué)生活動(dòng):1題搶答,同桌同學(xué)給予肯定或否定,且肯定地說出依據(jù),否定的再說出正確答案;2題學(xué)生觀察后,在練習(xí)本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對(duì)所做答案給予肯定或更正.
【教法說明】在此組練習(xí)題中,1題目的是以填表的形式感知一個(gè)多項(xiàng)式就是單項(xiàng)式的和,多項(xiàng)式的項(xiàng)就是單項(xiàng)式;使學(xué)生能進(jìn)一步了解多項(xiàng)式與單項(xiàng)式的關(guān)系,避免死記硬背概念,而不能準(zhǔn)確應(yīng)用于解題中的弊病.2題是在理解概念和完成1題單一問題的基礎(chǔ)上進(jìn)行綜合訓(xùn)練,使學(xué)生逐步學(xué)會(huì)使用數(shù)學(xué)語言.
。ㄋ模w納小結(jié)
師:今天我們學(xué)習(xí)了《整式》一節(jié)中“多項(xiàng)式”的有關(guān)概念;在掌握多項(xiàng)式概念時(shí),要注意它的項(xiàng)數(shù)和次數(shù).前面我們還學(xué)習(xí)了單項(xiàng)式,掌握單項(xiàng)式時(shí)要注意它的系數(shù)和次數(shù).
歸納:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式.
。郯鍟
說明:教師邊小結(jié)邊板書出多項(xiàng)式、單項(xiàng)式,然后再提出它們統(tǒng)稱為整式,并做了述板書,使所學(xué)知識(shí)納入知識(shí)系統(tǒng).
鞏固練習(xí):
(出示投影4)
下列各代數(shù)式:0, , , , , , 中,單項(xiàng)式有__________,多項(xiàng)式有____________,整式有_____________.
學(xué)生活動(dòng):觀察后學(xué)生回答,互相補(bǔ)充、糾正,提醒學(xué)生不能遺漏.
【教法說明】數(shù)學(xué)要領(lǐng)重在于應(yīng)用,通過上題的訓(xùn)練,可使學(xué)生很清楚地了解單項(xiàng)式、多項(xiàng)式的區(qū)別與聯(lián)系,它們與整式的關(guān)系.
。ㄎ澹┳兪接(xùn)練,培養(yǎng)能力
(出示投影5)
1.單項(xiàng)式 , , 的和_________,它是__________次__________項(xiàng)式.
2. 是_______次________項(xiàng)式 是__________次_________項(xiàng)式,它的常數(shù)項(xiàng)_________.
3. 是________次________項(xiàng)式,最高次項(xiàng)是_________,最高次項(xiàng)的系數(shù)是_________,常數(shù)項(xiàng)是__________.
4. 的2倍與 的平方的 的和,用代數(shù)式表示__________,它是__________(填單項(xiàng)式或多項(xiàng)式).
學(xué)生活動(dòng):每個(gè)學(xué)生先獨(dú)立在練習(xí)本上完成,然后小組互相交流補(bǔ)充,最后小組選出代表發(fā)言.
師:做肯定或否定,強(qiáng)調(diào)3題中最高次項(xiàng)的系數(shù)是 , 是一個(gè)數(shù)字,不是字母,因?yàn)樗荒艽韴A周率這一個(gè)數(shù)值,而一個(gè)字母是可以取不同的值的.
【教法說明】本組是在前面掌握了本節(jié)課基本知識(shí)后安排的一組訓(xùn)練題,目的是使學(xué)生進(jìn)一步理解多項(xiàng)式的次數(shù)與項(xiàng)數(shù),特別是對(duì) 這個(gè)數(shù)字要有一個(gè)明確的認(rèn)識(shí).
自編題目練習(xí):
每個(gè)學(xué)生寫出6個(gè)整式,并要求既有單項(xiàng)式,又有多項(xiàng)式,然后交給同桌的同學(xué),完成以下任務(wù),①先找出單項(xiàng)式、多項(xiàng)式,②是單項(xiàng)式的寫出系數(shù)與次數(shù),是多項(xiàng)式的寫出是幾次幾項(xiàng)式,最高次數(shù)是什么?常數(shù)項(xiàng)是什么,然后再互相討論對(duì)方的解答是否正確.
【教學(xué)說明】自編題目的訓(xùn)練,一是可活躍課堂氣氛,增強(qiáng)了學(xué)生的參與意識(shí);二是可以培養(yǎng)學(xué)生的發(fā)散思維和逆向思維能力.
師:通過上面編題、解題練習(xí),同學(xué)們對(duì)整式的概念有了清楚的理解,下面再按老師的要求編題,編一個(gè)四次三項(xiàng)式,看誰編的又快又準(zhǔn)確,再編一個(gè)不高于三次的多項(xiàng)式.
學(xué)生活動(dòng):學(xué)生邊回答師邊板書,然后學(xué)生討論是否符合要求.
【教法說明】通過上面訓(xùn)練,使學(xué)生進(jìn)一步鞏固多項(xiàng)式項(xiàng)數(shù)、次數(shù)的概念,同時(shí)也可以培養(yǎng)學(xué)生逆向思維的能力.
八、隨堂練習(xí)
1.判斷題
。1)-5不是多項(xiàng)式( )
。2) 是二次二項(xiàng)式( )
。3) 是二次三項(xiàng)式( )
(4) 是一次三項(xiàng)式( )
。5) 的最高次項(xiàng)系數(shù)是3( )
2.填空題
(1)把上列代數(shù)式分別填在相應(yīng)的括號(hào)里
, , ,0, , ,
; ;
。 ;
.
。2)如果代數(shù)式 是關(guān)于 的三次二項(xiàng)式則 , .
九、布置作業(yè)
。ㄒ唬┍刈鲱}:課本第149頁習(xí)題3.1A組12.
。ǘ┻x做題:課本第150頁習(xí)題3.1B組3.
十、板書設(shè)計(jì)
隨堂練習(xí)答案
1.√ × × √ ×
2.(1)單項(xiàng)式 ,多項(xiàng)式 ;
整式 ;
二項(xiàng)式 ;
三次三項(xiàng)式 ;
。2) , .
作業(yè)答案
教材P.149中A組12題:(1)三次二項(xiàng)式 (2)二次三項(xiàng)式
。3)一次二項(xiàng)式 (4)四次三項(xiàng)式
初中數(shù)學(xué)教案 篇14
教學(xué)目的
通過分析儲(chǔ)蓄中的數(shù)量關(guān)系、商品利潤(rùn)等有關(guān)知識(shí),經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個(gè)題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲(chǔ)蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤(rùn)等有關(guān)知識(shí)。
利潤(rùn)=售價(jià)-成本; =商品利潤(rùn)率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲(chǔ)蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤(rùn)是怎么來的?
標(biāo)價(jià)的80%(即售價(jià))-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價(jià)為:(1+40%)x
每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%
每件服裝的`利潤(rùn)為:(1+40%)x·80%-x
由等量關(guān)系,列出方程:
(1+40%)x·80%-x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時(shí),首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案01-10
初中數(shù)學(xué)教案01-24
初中數(shù)學(xué)教案范例07-08
人教版初中數(shù)學(xué)教案07-08
初中數(shù)學(xué)教案:實(shí)數(shù)07-08
初中數(shù)學(xué)教案模板01-12
【推薦】初中數(shù)學(xué)教案02-27
【熱門】初中數(shù)學(xué)教案03-01
初中數(shù)學(xué)教案【熱】03-01