人妻丰满熟妇无码区乱com|久久婷婷午夜精品二区|一道本国产不卡视频|国产孕妇故爱A级高清片免费看

<tbody id="geoqw"></tbody>
  • <center id="geoqw"></center>
  • <menu id="geoqw"></menu>
  • <center id="geoqw"></center>
    
    <menu id="geoqw"></menu>
  • 八年級數(shù)學的教案

    時間:2024-07-25 08:09:12 數(shù)學教案 我要投稿

    八年級數(shù)學的教案

      作為一名教師,可能需要進行教案編寫工作,教案是教學活動的依據(jù),有著重要的地位。教案應(yīng)該怎么寫呢?以下是小編為大家收集的八年級數(shù)學的教案,歡迎大家分享。

    八年級數(shù)學的教案

    八年級數(shù)學的教案1

      一、學情分析

      認知基礎(chǔ):學生在七年級下冊第四章已學習了《變量之間的關(guān)系》,對變量間互相依存的關(guān)系有了一定的認識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認知方式和思維深度上對學生有較高的要求,學生在理解和運用時會有一定的難度。

      活動經(jīng)驗基礎(chǔ):在七年級下冊《變量之間的關(guān)系》一章中,學生接觸了大量的生活實例額,體會了變量之間相互依賴關(guān)系的普遍性,感受到了學習變量關(guān)系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。

      二、教學目標:

      知識與技能目標:

     。1)初步掌握函數(shù)概念,能判斷兩個變量之間的關(guān)系是否可以看作函數(shù)。

     。2)根據(jù)兩個變量之間的`關(guān)系式,給定其中一個變量的值相應(yīng)的會求出另一個變量的值。

     。3)會對一個具體實例進行概括抽象成為函數(shù)問題。

      過程與方法目標:

     。1)通過函數(shù)概念初步形成利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

     。2)經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

      情感態(tài)度與價值觀目標:

     。1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

     。2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

    八年級數(shù)學的教案2

      分式方程

      教學目標

      1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

      2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應(yīng)用意識。

      3.在活動中培養(yǎng)學生樂于探究、合作學習的`習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應(yīng)用價值.

      教學重點:

      將實際問題中的等量 關(guān)系用分式方程表示

      教學難點:

      找實際問題中的等量關(guān)系

      教學過程:

      情境導入:

      有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

      如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

      根據(jù)題意,可得方程___________________

      二、講授新課

      從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

      這 一問題中有哪些等量關(guān)系?

      如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

      根據(jù)題意,可得方程_ _____________________。

      學生分組探討、交流,列出方程.

      三.做一做:

      為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

      四.議一議:

      上面所得到的方程有什么共同特點?

      分母中含有未知數(shù)的方程叫做分式方程

      分式方程與整式方程有什么區(qū)別?

      五、 隨堂練習

      (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

      (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

      (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

      六、學 習小結(jié)

      本節(jié)課你學到了哪些知識?有什么感想?

      七.作業(yè)布置

    八年級數(shù)學的教案3

      一、教學目標

      (一)知識目標

      1、創(chuàng)設(shè)情境引出問題,激起學生探索直角三角形三邊的關(guān)系的興趣。

      2、讓學生帶著問題體驗勾股定理的探索過程,并正確運用勾股定理解決相關(guān)問題。

      (二)能力目標

      1、培養(yǎng)學生學數(shù)學、用數(shù)學的意識和能力。

      2、能把已有的數(shù)學知識運用于勾股定理的探索過程。

      3、能熟練掌握勾股定理及其變形公式,并會根據(jù)圖形找出直角三角形及其三邊,從而正確運用勾股定理及其變形公式于圖形解決相關(guān)問題。 (三)情感目標

      1、培養(yǎng)學生的自主探索精神,提高學生合作交流能力和解決問題的能力。

      2、讓學生感受數(shù)學文化的價值和中國傳統(tǒng)數(shù)學的成就,激發(fā)學生的愛國熱情,培養(yǎng)學生的民族自豪感,教育學生奮發(fā)圖強、努力學習。

      二、教學重點

      通過圖形找出直角三角形三邊之間的關(guān)系,并正確運用勾股定理及其變形公式解決相關(guān)問題。

      三、教學難點

      運用已掌握的相關(guān)數(shù)學知識探索勾股定理。

      四、教學過程

      (一)創(chuàng)設(shè)情境,引出問題

      想一想:

      小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?你能解釋這是為什么嗎?

      要解決這個問題,必須掌握這節(jié)課的內(nèi)容。這節(jié)課我們要探討的是直角三角形的三邊有什么關(guān)系。

      - 1 -

      (二) 探索交流,得出新知

      探討之前我們一起來回憶一下直角三角形的三邊:

      如圖,在Rt △ABC 中,∠C=90° ∠C 所對的邊AB :斜邊c ∠A 所對的邊BC :直角邊a ∠B 所對的邊AC :直角邊b

      問題:在直角三角形中,a 、b 、c 三條邊之間到底存在著怎樣的關(guān)系呢? (1)我們先來探討等腰直角三角形的三邊之間的關(guān)系。

      這個關(guān)系2500年前已經(jīng)有數(shù)學家發(fā)現(xiàn)了,今天我們把當時的情景重現(xiàn),A

      C

      a

      B

      請同學們也來看一看、找一找。

      如圖

      數(shù)學家畢達哥拉斯的發(fā)現(xiàn):S A +SB =SC

      即:a 2+b2=c2

      也就是說:在等腰直角三角形中,兩直角邊的平方和等于斜邊的平方。

      議一議:如果是一般的直角三角形,兩直角邊的平方和是否還會等于斜邊的平方? 如圖

      分析: SA +SB =SC 是否成立?

      (1)正方形A 中含有 個小方格,即S A = 個單位面積。 (2)正方形B 中含有 個小方格,即S B = 個單位面積。 (3)由上可得:S A +SB = 個單位面積 問題:正方形C 的面積要如何求呢?與同伴進行交流。 方法一:

      “補”成一個邊長為整數(shù)格的大正方形,再減去四個直角邊為整數(shù)格的三角形 方法二:分割成四個直角邊為整數(shù)格的三角形,再加上一個小方格。 綜上:

      我們得出:S A +SB =SC

      即:a +b=c

      2

      2

      2

      C

      - 2 -

      a

      B

      也就是說:在一般的直角三角形中,兩直角邊的平方和等于斜邊的平方。

      概括:

      勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方

      數(shù)學語言描述:

      如圖,在Rt △ABC 中,a 2+b2=c2

      (用多媒體簡單介紹勾股定理的名稱由來、中國古代的數(shù)學成就及勾股定理的'“無字證明”) (三)應(yīng)用新知,解決問題

      例1:求出下列直角三角形中未知邊x 的長度 5

      注意:要根據(jù)圖表找出未知邊是斜邊還是直角邊,勾股定理要用對。

      從上面這兩道例題,我們知道了在直角三角形中,任意已知兩邊,可以求第三邊。 即勾股定理的變形公式: 如圖,在Rt △ABC 中

      (1)若已知a ,b 則求c 的公式為:c =(2)若已知a ,c 則求b 的公式為:b =(3)若已知b ,c 則求a 的公式為:a =

      a +b c -a c -b

      22

      22

      2

      C

      a

      B

      2

      例2: 如圖,在直角三角形ABC 中, ∠C=900, A

      (1) 已知: a=5, b=12, 求c;

      (2) 已知: b=8,c=10 , 求(3) 已知: a=

      3, c=2, 求 請同學們利用這節(jié)課學到的勾股定理及推論解決我們課前提出的問題:

      電視屏幕:

      解:在Rt △ABC 中,AB=46厘米,BC=58厘米

      由勾股定理得:AC=

      ?

      D

      A

      46AB

      2

      +BC

      2

      2

      =46+58

      2

      ≈74(厘米)

      ∴不同意小明的想法。

      - 3 -

      58厘米

      C

      (四)歸納總結(jié)

      (1)這節(jié)課你學到了什么知識?

      ①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。 ②在直角三角形中,任意已知兩邊,可以用勾股定理求第三邊。 (2) 運用“勾股定理”應(yīng)注意什么問題? ①要利用圖形找到未知邊所在的直角三角形; ②看清未知邊是所在直角三角形的哪一邊; ③勾股定理要用對。

      (五)練習鞏固

      (1)、如圖,受臺風“麥莎”影響,一棵樹在離地面8米處斷裂, 樹的頂部落在離樹跟底部6米處,這棵樹折斷前有多高?

      (2)、學校有一塊長方形的花圃,經(jīng)常有同學為了少走幾步而走捷徑,于是在草坪上開辟了一條“新路”,他們這樣走少走了______步.

      (每兩步約為1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 則BC 的長為___________。 (六)作業(yè)

      1. A、B 、C 組:課本第69、70頁,習題18.1 第1, 2,3題. 2. A、B :練習冊33、34頁

      3.A :課本第71頁“閱讀與思考”,了解勾股定理的多種證法。

    八年級數(shù)學的教案4

      教學目標:

      1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學生的探究意識和合作交流的習慣;

      2。索并掌握平行四邊形的性質(zhì),并能簡單應(yīng)用;

      3。在探索活動過程中發(fā)展學生的探究意識。

      教學重點:平行四邊形性質(zhì)的探索。

      教學難點:平行四邊形性質(zhì)的理解。

      教學準備:多媒體課件

      教學過程

      第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

      1。小組活動一

      內(nèi)容:

      問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

     。1)你拼出了怎樣的四邊形?與同桌交流一下;

      (2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

      2。小組活動二

      內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

      第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)

      小組活動3:

      用 一張半透明的紙復制你剛才畫的平行四邊形,并將復制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的結(jié)論嗎?

     。1)讓學生動手操作、復制、旋轉(zhuǎn) 、觀察、分析;

     。2)學生交流、議論;

     。3)教師利用多媒體展示實踐的過程。

      第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學本質(zhì)。)

      實踐 探索內(nèi)容

     。1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的`對角線把它分成的兩個三角形全等。

     。2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

      ∵ 四邊形ABCD是平行四邊形

      AD // BC, AB // CD

      2,4

      △AB C和△CDA中

      1

      AC=C A

      4

      △ABC≌△CDA(ASA)

      AB=DC, AD=CB,B

      又∵2

      4

      3=4

      即BAD=DCB

      第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時從不同角度平移、旋轉(zhuǎn)等再一次認識平行四邊形的本質(zhì)特征。)

      1;顒觾(nèi)容:

      (1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

      A(學生思考、議論)

      B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

      由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

     。2)練一練(P99隨堂練習)

      練1 如圖:四邊形ABCD是平行四邊形。

     。1)求ADC、BCD度數(shù)

     。2)邊AB、BC的度數(shù)、長度。

      練2 四邊形ABCD是平行四邊形

     。1)它的四條邊中哪些 線段可以通過平移相到得到?

     。2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

      歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

      第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學生踴躍談感受和收獲)

      活動內(nèi)容

      師生相互交流、反思、總結(jié)。

     。1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

      (2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

      (3)本節(jié)學習到了什么?(知識上、方法上)

      考一考:

      1。 ABCD中,B=60,則A= ,C= ,D= 。

      2。 ABCD中,A比B大20,則C= 。

      3。 ABCD中,AB=3,BC=5,則AD= CD= 。

      4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

      布置作業(yè)

      課本習題4。1

      A組(學優(yōu)生)1 、2

      B組(中等生)1、2

      C組(后三分之一生)1、2

      教學反思

    八年級數(shù)學的教案5

      一、創(chuàng)設(shè)情境

      在學習與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題。

      問題1如圖是某地一天內(nèi)的氣溫變化圖。

      看圖回答:

      (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫。

      (2)這一天中,最高氣溫是多少?最低氣溫是多少?

      (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

      解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

      (2)這一天中,最高氣溫是5℃。最低氣溫是-4℃;

      (3)這一天中,3時~14時的氣溫在逐漸升高。0時~3時和14時~24時的氣溫在逐漸降低。

      從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化。那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

      二、探究歸納

      問題2銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

      觀察上表,說說隨著存期x的增長,相應(yīng)的年利率y是如何變化的。

      解隨著存期x的增長,相應(yīng)的年利率y也隨著增長。

      問題3收音機刻度盤的`波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的。下面是一些對應(yīng)的數(shù)值:

      觀察上表回答:

      (1)波長l和頻率f數(shù)值之間有什么關(guān)系?

      (2)波長l越大,頻率f就________。

      解(1)l與f的乘積是一個定值,即

      lf=300000,或者說。

      (2)波長l越大,頻率f就 越小 。

      問題4圓的面積隨著半徑的增大而增大。如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________。

      利用這個關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

      由此可以看出,圓的半徑越大,它的面積就_________。

      解S=πr2。

      圓的半徑越大,它的面積就越大。

      在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律。這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量。例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值。像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable)。

      上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關(guān)。一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

    八年級數(shù)學的教案6

      首先通過對問題的思考與解答,回顧總結(jié)梳理本章所學的知識,將所學的知識與以前學過的知識進行緊密聯(lián)結(jié)。通過思考,知識得到內(nèi)化,認知結(jié)構(gòu)得到進一步完善。回憶本章內(nèi)容,建立知識結(jié)構(gòu)圖。通過練習把知識加以鞏固。

      教學目標

      知識與技能

      1.反比例函數(shù)的圖象和性質(zhì)。

      2.能根據(jù)所給的條件,確定反比例函數(shù),體會函數(shù)在實際問題中的應(yīng)用價值。

      3.反比例函數(shù)的應(yīng)用:解決實際問題,學科內(nèi)部的應(yīng)用。

      過程與方法

      1.反思在具體問題中探索數(shù)量關(guān)系和變化規(guī)律的過程,理解反比例函數(shù)的概念,領(lǐng)會反比例函數(shù)作為一種數(shù)學模型的意義。

      2.能畫出反比例函數(shù)的圖象,并根據(jù)圖象和解析式掌握反比例函數(shù)的主要性質(zhì)。

      3.提高觀察、分析、歸納的能力,感悟數(shù)形結(jié)合的.數(shù)學思想方法。

      情感、態(tài)度與價值觀

      1.面對困難,樹立克服困難的勇氣和戰(zhàn)勝困難的信心。

      2.養(yǎng)成合作交流意識和運用數(shù)學問題解決實際問題的意識,認識數(shù)學的實用性。

      教學重點和難點

      重點是:反比例函數(shù)的概念、圖象和主要性質(zhì)。

      難點是:對反比例函數(shù)意義的理解。

      教學方法

      啟發(fā)引導、小組討論

      課時安排

      1課時

      教學媒體

      課件

      教學過程設(shè)計

      (一)創(chuàng)設(shè)問題情境,引入新課

      問題l:你能舉出現(xiàn)實生活中有關(guān)反函數(shù)的幾個例子嗎?

    八年級數(shù)學的教案7

      教學目標:

      1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

      2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題.

      3.培養(yǎng)用類比、逆向聯(lián)想及運動的思維方法來研究問題.

      重點、難點

      1.重點:平行四邊形的判定方法及應(yīng)用.

      2.難點:平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.

      3.難點的突破方法:

      平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時它又是后面進一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學生合情推理及說理的良好素材.本節(jié)課的教學重點為平行四邊形的判別方法.在本課中,可以探索活動為載體,并將論證作為探索活動的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡單推理有機融合,達到突出重點、分散難點的目的.

     。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個方法來證明.

     。2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對角線兩方面進行記憶.要注意:

     、俦窘滩臎]有把用角來作為判定的方法,教學中可以根據(jù)學生的情況作為補充;

     、诒竟(jié)課只介紹前兩個判定方法.

     。3)教學中,我們可創(chuàng)設(shè)貼近學生生活、生動有趣的問題情境,開展有效的數(shù)學活動,如通過欣賞圖片及識別圖片中的平行四邊形,使學生建立對平行四邊形的直覺認識.并復習平行四邊形的定義,建立新舊知識間的相互聯(lián)系.接著提出問題:小明的父親手中有一些木條,他想通過適當?shù)臏y量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?從而組織學生主動參與、勤于動手、積極思考,使他們在自主探究與合作交流的過程中,從整體上把握“平行四邊形的判別”的方法.

      然后利用學生手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件.

      在學生拼圖的活動中,教師可以以問題串的形式展開對平行四邊形判別方法的探討,讓學生在問題解決中,實現(xiàn)對平行四邊形各種判別方法的掌握,并發(fā)展了學生說理及簡單推理的能力.

     。4)從本節(jié)開始,就應(yīng)讓學生直接運用平行四邊形的性質(zhì)和判定去解決問題,凡是可以用平行四邊形知識證明的問題,不要再回到用三角形全等證明.應(yīng)該對學生提出這個要求.

     。5)平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質(zhì)去解決某些問題.例如,求角的度數(shù),線段的長度,證明角相等或線段相等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.

     。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識,這些知識是本章的重點內(nèi)容,要使學生熟練地掌握這些知識.

      例題的意圖分析

      本節(jié)課安排了3個例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運用,此題最好先讓學生說出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補充的題目,其目的就是讓學生能靈活和綜合地運用平行四邊形的判定方法和性質(zhì)來解決問題.例3是一道拼圖題,教學時,可以讓學生動起來,邊拼圖邊說明道理,即可以提高學生的動手能力和學生的思維能力,又可以提高學生的學習興趣.如讓學生再用四個不等邊三角形拼一個如圖的大三角形,讓學生指出圖中所有的平行四邊形,并說明理由.

      課堂引入

      1.欣賞圖片、提出問題.

      展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?

      2.【探究】:小明的父親手中有一些木條,他想通過適當?shù)臏y量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

      讓學生利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

     。1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

     。2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

     。3)你能說出你的做法及其道理嗎?

     。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

     。5)你還能找出其他方法嗎?

      從探究中得到:

      平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

      平行四邊形判定方法2 對角線互相平分的`四邊形是平行四邊形。

      例習題分析

      1(教材P96例3)已知:如圖ABCD的對角線AC、BD交于點O,E、F是AC上的兩點,并且AE=CF.

      求證:四邊形BFDE是平行四邊形.

      分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來證明.

     。ㄗC明過程參看教材)

      問;你還有其它的證明方法嗎?比較一下,哪種證明方法簡單.

      2(補充) 已知:如圖,A′B′∥BA,B′C′∥CB, C′A′∥AC.

      求證:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

      (2) △ABC的頂點分別是△B′C′A′各邊的中點.

      證明:(1)∵A′B′∥BA,C′B′∥BC,

      ∴四邊形ABCB′是平行四邊形.

      ∴ ∠ABC=∠B′(平行四邊形的對角相等).

      同理∠CAB=∠A′,∠BCA=∠C′.

      (2) 由(1)證得四邊形ABCB′是平行四邊形.同理,四邊形ABA′C是平行四邊形.

      ∴ AB=B′C, AB=A′C(平行四邊形的對邊相等).

      ∴ B′C=A′C.

      同理 B′A=C′A, A′B=C′B.

      ∴ △ABC的頂點A、B、C分別是△B′C′A′的邊B′C′、C′A′、A′B′的中點.

      3(補充)小明用手中六個全等的正三角形做拼圖游戲時,拼成一個六邊形.你能在圖中找出所有的平行四邊形嗎?并說說你的理由.

      解:有6個平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

      理由是:因為正△ABO≌正△AOF,所以AB=BO,OF=FA.根據(jù) “兩組對邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形.其它五個同理.

      隨堂練習

      1.如圖,在四邊形ABCD中,AC、BD相交于點O,

     。1)若AD=8cm,AB=4cm,那么當BC=____cm,CD=____cm時,四邊形ABCD為平行四邊形;

     。2)若AC=10cm,BD=8cm,那么當AO=___cm,DO=___cm時,四邊形ABCD為平行四邊形.

      2.已知:如圖,ABCD中,點E、F分別在CD、AB上,DF∥BE,EF交BD于點O.求證:EO=OF.

      3.靈活運用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個圖形由(n+1)個等邊三角形拼成,通過觀察,分析發(fā)現(xiàn):

      ①第4個圖形中平行四邊形的個數(shù)為_____.

     。6個)

     、诘8個圖形中平行四邊形的個數(shù)為_____.

      (20個)

      課后練習

      1.(選擇)下列條件中能判斷四邊形是平行四邊形的是( ).

     。ˋ)對角線互相垂直 (B)對角線相等

      (C)對角線互相垂直且相等 (D)對角線互相平分

      2.已知:如圖,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

      求證:BE=CF

    八年級數(shù)學的教案8

      教學內(nèi)容和地位:

      眾數(shù)、中位數(shù)是描述一組數(shù)據(jù)的集中趨勢的兩個統(tǒng)計特征量,是幫助學生學會用數(shù)據(jù)說話的基本概念。本節(jié)課的教學內(nèi)容和現(xiàn)實生活密切相關(guān),是培養(yǎng)學生應(yīng)用數(shù)學意識和創(chuàng)新能力的最好素材。

      教學重點和難點:

      本節(jié)課的重點是眾數(shù)和中位數(shù)兩概念的形成過程及兩概念的運用。本節(jié)課的難點是對統(tǒng)計數(shù)據(jù)從多角度進行全面地分析。因為利用數(shù)據(jù)進行分析,對剛剛接觸統(tǒng)計的學生來說,他們原有的認知結(jié)構(gòu)中缺乏這方面的知識經(jīng)驗,所以,我們可以借助生活中的`事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。

      教學目標分析:

      認知目標:

     。1)使學生認知眾數(shù)、中位數(shù)的意義;

     。2)會求一組數(shù)據(jù)的眾數(shù)、中位數(shù)。

      能力目標:

     。1)讓學生接觸并解決一些社會生活中的問題,為學生創(chuàng)新學數(shù)學、用數(shù)學的情境,培養(yǎng)學生的數(shù)學應(yīng)用意識和創(chuàng)新意識。

      (2)在問題解決的過程中,培養(yǎng)學生的自主學習能力;

      (3)在問題分析的過程中,培養(yǎng)學生的團結(jié)協(xié)作精神。

      情感目標:

     。1)通過多媒體網(wǎng)絡(luò)課件,提供適當?shù)膯栴}情境,激發(fā)學生的學習熱情,培養(yǎng)學生學習數(shù)學的興趣;

     。2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。

      教學輔助:網(wǎng)絡(luò)教室、多媒體輔助網(wǎng)絡(luò)教學課件、BBS電子公告欄、學習資源庫

      教法與學法:

      根據(jù)本節(jié)課的教學內(nèi)容,主要采用了討論發(fā)現(xiàn)法。即課堂上,教師(或?qū)W生)提出適當?shù)膯栴},通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發(fā)現(xiàn)概念的產(chǎn)生過程,體現(xiàn)“數(shù)學教學是數(shù)學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現(xiàn)他們的主體地位,而教師是通過對學生參與學習的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結(jié)合”、“學思結(jié)合”、“學用結(jié)合”的學法指導,這對學生的主體意識的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。

    八年級數(shù)學的教案9

      一、教學目標

      1.使學生理解并掌握分式的概念,了解有理式的概念;

      2.使學生能夠求出分式有意義的條件;

      3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉(zhuǎn)化的思想方法解決問題的能力;

      4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識.

      二、重點、難點、疑點及解決辦法

      1.教學重點和難點 明確分式的分母不為零.

      2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的理解.

      三、教學過程

      【新課引入】

      前面所研究的'因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式)

      【新課】

      1.分式的定義

      (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結(jié)論:

      用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

      (2)由學生舉幾個分式的例子.

      (3)學生小結(jié)分式的概念中應(yīng)注意的問題.

     、俜帜钢泻凶帜.

     、谌缤謹(shù)一樣,分式的分母不能為零.

      (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

      2.有理式的分類

      請學生類比有理數(shù)的分類為有理式分類:

      例1 當取何值時,下列分式有意義?

      (1);

      解:由分母得.

      ∴當時,原分式有意義.

      (2);

      解:由分母得.

      ∴當時,原分式有意義.

      (3);

      解:∵恒成立,

      ∴取一切實數(shù)時,原分式都有意義.

      (4).

      解:由分母得.

      ∴當且時,原分式有意義.

      思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

      例2 當取何值時,下列分式的值為零?

      (1);

      解:由分子得.

      而當時,分母.

      ∴當時,原分式值為零.

      小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

      (2);

      解:由分子得.

      而當時,分母,分式無意義.

      當時,分母.

      ∴當時,原分式值為零.

      (3);

      解:由分子得.

      而當時,分母.

      當時,分母.

      ∴當或時,原分式值都為零.

      (4).

      解:由分子得.

      而當時,,分式無意義.

      ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

      (四)總結(jié)、擴展

      1.分式與分數(shù)的區(qū)別.

      2.分式何時有意義?

      3.分式何時值為零?

      (五)隨堂練習

      1.填空題:

      (1)當時,分式的值為零

      (2)當時,分式的值為零

      (3)當時,分式的值為零

      2.教材P55中1、2、3.

      八、布置作業(yè)

      教材P56中A組3、4;B組(1)、(2)、(3).

      九、板書設(shè)計

      課題 例1

      1.定義例2

      2.有理式分類

    八年級數(shù)學的教案10

      教學目標:

      知識目標:

      1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

      2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

      3、會對一個具體實例進行概括抽象成為數(shù)學問題。

      能力目標:

      1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

      2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

      情感目標:

      1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

      2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

      教學重點:

      掌握函數(shù)概念。

      判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

      能把實際問題抽象概括為函數(shù)問題。

      教學難點:

      理解函數(shù)的概念。

      能把實際問題抽象概括為函數(shù)問題。

      教學過程設(shè)計:

      一、創(chuàng)設(shè)問題情境,導入新課

      『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

      『生』:摩天輪。

      『師』:你們坐過嗎?

      ……

      『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

      『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉(zhuǎn)動一圈高度就重復一次。

      『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。

      大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:

      t/分 0 1 2 3 4 5 …… h/米

      t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

      『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?

      『生』:確定。

      『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

      『生』:研究的對象有兩個,是時間t和高度h。

      『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。

      二、新課學習

      做一做

     。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

      填寫下表:

      層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

      『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

     。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

     、儆嬎惝攆enbie為50,60,100時,相應(yīng)的滑行距離S是多少?

     、诮o定一個V值,你能求出相應(yīng)的S值嗎?

      解:略

      議一議

      『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

      『生』:相同點是:這三個問題中都研究了兩個變量。

      不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。

      『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。

      函數(shù)的'概念

      在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。

      一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

      三、隨堂練習

      書P152頁 隨堂練習1、2、3

      四、本課小結(jié)

      初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

      在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。

      函數(shù)的三種表達式:

      圖象;(2)表格;(3)關(guān)系式。

      五、探究活動

      為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

     。ù鸢福篩=1.8x-6或)

      六、課后作業(yè)

      習題6.1

    八年級數(shù)學的教案11

      教學目標

      1.使學生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

      2.培養(yǎng)學生觀察、分析、比較的能力,并初步掌握對比的思想方法;

      3.在本節(jié)課的教學過程中,滲透數(shù)形結(jié)合的思想,并使學生初步學會運用數(shù)形結(jié)合的觀點去分析問題、解決問題.

      教學重點和難點

      重點:不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

      難點:不等式的解集的概念.

      課堂教學過程設(shè)計

      一、從學生原有的認知結(jié)構(gòu)提出問題

      1.什么叫不等式?什么叫方程?什么叫方程的解?(請學生舉例說明)

      2.用不等式表示:

      (1)x的3倍大于1; (2)y與5的差大于零;

      (3)x與3的和小于6; (4)x的小于2.

      (3)當x取下列數(shù)值時,不等式x+3<6是否成立?

      -4,3.5,-2.5,3,0,2.9.

      ((2)、(3)兩題用投影儀打在屏幕上)

      二、講授新課

      1.引導學生運用對比的方法,得出不等式的解的概念

      2.不等式的解集及解不等式

      首先,向?qū)W生提出如下問題:

      不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒有其它的解?若有,解的個數(shù)是多少?它們的分布是有什么規(guī)律?

      (啟發(fā)學生利用試驗的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實心圓點畫出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)

      然后,啟發(fā)學生,通過觀察這些點在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡稱不等式x+3<6的解集,記作x<3.

      最后,請學生總結(jié)出不等式的解集及解不等式的概念.(若學生總結(jié)有困難,教師可作適當?shù)膯l(fā)、補充)

      一般地說,一個含有未知數(shù)的不等式的所有解,組成這個不等式的解的集合.簡稱為這個不等式的解集.

      不等式一般有無限多個解.

      求不等式的解集的過程,叫做解不等式.

      3.啟發(fā)學生如何在數(shù)軸上表示不等式的解集

      我們知道解不等式不能只求個別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個數(shù)或幾個數(shù)組成的,而是由無限多個數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學生想一想,然后請一名學生到黑板上試著用數(shù)軸表示一下,其余同學在下面自行完成,教師巡視,并針對黑板上板演的結(jié)果做講解)

      在數(shù)軸上表示3的點的左邊部分,表示解集x<3.如下圖所示.

      由于x=3不是不等式x+3<6的解,所以其中表示3的點用空心圓圈標出來.(表示挖去x=3這個點)

      記號“≥”讀作大于或等于,既不小于;記號“≤”讀作小于或等于,即不大于.

      例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請一名學生回答)在數(shù)軸上表示如下圖.

      即用數(shù)軸上表示-2的點和它的右邊部分表示出來.由于解中包含x=-2,故其中表示-2的點用實心圓點表示.

      此處,教師應(yīng)強調(diào),這里特別要注意區(qū)別是用空心圓圈“。”還是用實心圓點“.”,是左邊部分,還是右邊部分.

      三、應(yīng)用舉例,變式練習

      例1 在數(shù)軸上表示下列不等式的解集:

      (1)x≤-5; (2)x≥0; (3)x>-1;

      (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

      解(1),(2),(3)略.

      (4)在數(shù)軸上表示1≤x≤4,如下圖

      (5)在數(shù)軸上表示-2<x≤3,如下圖

      (此題在講解時,教師要著重強調(diào):注意所給題目中的解集是否包含分界點,是左邊部分還是右邊部分.本題應(yīng)分別讓6名學生板演,其余學生自行完成,教師巡視遇到問題,及時糾正)

      例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來:

      (1)x小于-1; (2)x不小于-1;

      (3)a是正數(shù); (4)b是非負數(shù).

      解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

      (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

      (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

      (4)b是非負數(shù)表示為b≥0.(用數(shù)軸表示略)

      (以上各小題分別請四名學生生回答,教師板書,最后,請學生在筆記本上畫數(shù)軸表示)

      例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請學生口答,教師板演)

      解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

      (本題從另一例面來揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進一步加深學生對不等式解集的理解,以使學生進一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點)

      練習(1)用簡明語言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

      (2)在數(shù)軸上表示下列不等式的解集:

     、賦>3; ②x≥-1; ③x≤-1.5;

     、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

      (3)用觀察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來.

     。4)觀察不等式<1的解集,并用不等式和數(shù)軸分別表示出來,它的正數(shù)解是什么?

      自然數(shù)解是什么?(*表示選作題)

      四、師生共同小結(jié)

      針對本節(jié)課所學內(nèi)容,請學生回答以下問題:

      1.如何區(qū)別不等式的解,不等式的.解集及解不等式這幾個概念?

      2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點.

      3.記號“≥”、“≤”各表示什么含義?

      4.在數(shù)軸上表示不等式解集時應(yīng)注意什么?

      結(jié)合學生的回答,教師再強調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標準;在數(shù)軸上表示不等式解集時,需特別注意解的范圍的分界點,以便在數(shù)軸上正確使用空心圓圈“!焙蛯嵭膱A點“·”.

      五、作業(yè)

      1.不等式x+3≤6的解集是什么?

      2.在數(shù)軸上表示下列不等式的解集:

      (1)x≤1; (2)x≤0; (3)-1<x≤5;

      (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

      3.求不等式x+2<5的正整數(shù)解.

      課堂教學設(shè)計說明由于本節(jié)課的知識點比較多,因此,在設(shè)計教學過程時,緊緊抓住不等式的解集這一重點知識.通過對方程的解的電義的回憶,對比學習不等式的解及解集.同時,為了進一步加深學生對不等式的解集的理解,教學中注意運用以下幾種教學方法:(1)啟發(fā)學生用試驗的方法,結(jié)合數(shù)軸直觀形象來研究不等式的解和解集;(2)比較方程與不等式的解的異同點;(3)通過例題與練習,加深理解.

      在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進了一步.因此,在設(shè)計教學過程時,就充分考慮到應(yīng)使學生通過本節(jié)課的學習,進一步領(lǐng)會數(shù)形結(jié)合的思想方法具有形象、直觀、易于說明問題的優(yōu)點,并初步學會用數(shù)形結(jié)合的觀念去處理問題、解決問題.

    八年級數(shù)學的教案12

      教學目標:

      學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。

      教學重點:

      去分母法解可化為一元一次方程或一元二次方程的`分式方程、驗根的方法、

      教學難點:

      解分式方程的一般步驟。

      教學過程:

      復習引入:

      1、什么叫分式方程?

      2、解分式方程的基本思想:

      分式方程整式方程

      3、解方程(學生板演)

      講授新課:

      1、由上述學生的板演歸納出解分式方程的一般步驟

     。1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;

     。2)解這個整式方程;

     。3)檢驗:將所得的解代入原方程的最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、

      2、范例講解

     。▽W生嘗試練習后,教師講評)

      例1:解方程例2:解方程例3:解方程講評時強調(diào):

      1、怎樣確定最簡公分母?(先將各分母因式分解)

      2、解分式方程的步驟、

      鞏固練習:P1471t,2t、

      課堂小結(jié):解分式方程的一般步驟

      布置作業(yè):見作業(yè)本。

    八年級數(shù)學的教案13

      【教學目標】

      知識與技能

      能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

      過程與方法

      使學生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學化歸思想方法進行因式分解.

      情感、態(tài)度與價值觀

      培養(yǎng)學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.

      【教學重難點】

      重點:掌握用提公因式法把多項式分解因式.

      難點:正確地確定多項式的最大公因式.

      關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

      【教學過程】

      一、回顧交流,導入新知

      【復習交流】

      下列從左到右的變形是否是因式分解,為什么?

      (1)2x2+4=2(x2+2);

      (2)2t2-3t+1=(2t3-3t2+t);

      (3)x2+4xy-y2=x(x+4y)-y2;

      (4)m(x+y)=mx+my;

      (5)x2-2xy+y2=(x-y)2.

      問題:

      1.多項式mn+mb中各項含有相同因式嗎?

      2.多項式4x2-x和xy2-yz-y呢?

      請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

      【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

      概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

      二、小組合作,探究方法

      教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

      【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的.系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

      三、范例學習,應(yīng)用所學

      例1:把-4x2yz-12xy2z+4xyz分解因式.

      解:-4x2yz-12xy2z+4xyz

      =-(4x2yz+12xy2z-4xyz)

      =-4xyz(x+3y-1)

      例2:分解因式:3a2(x-y)3-4b2(y-x)2

      【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

      解法1:3a2(x-y)3-4b2(y-x)2

      =-3a2(y-x)3-4b2(y-x)2

      =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

      =-(y-x)2[3a2(y-x)+4b2]

      =-(y-x)2(3a2y-3a2x+4b2)

      解法2:3a2(x-y)3-4b2(y-x)2

      =(x-y)2·3a2(x-y)-4b2(x-y)2

      =(x-y)2[3a2(x-y)-4b2]

      =(x-y)2(3a2x-3a2y-4b2)

      例3:用簡便的方法計算:

      0.84×12+12×0.6-0.44×12.

      【教師活動】引導學生觀察并分析怎樣計算更為簡便.

      解:0.84×12+12×0.6-0.44×12

      =12×(0.84+0.6-0.44)

      =12×1=12.

      【教師活動】在學生完成例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

      四、隨堂練習,鞏固深化

      課本115頁練習第1、2、3題.

      【探研時空】

      利用提公因式法計算:

      0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

      五、課堂總結(jié),發(fā)展?jié)撃?/p>

      1.利用提公因式法因式分解,關(guān)鍵是找準最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.

      2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

      六、布置作業(yè),專題突破

      課本119頁習題14.3第1、4(1)、6題.

    八年級數(shù)學的教案14

      一、創(chuàng)設(shè)情景,明確目標

      多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。

      二、自主學習,指向目標

      學習至此:請完成《學生用書》相應(yīng)部分。

      三、合作探究,達成目標

      多邊形的定義及有關(guān)概念

      活動一:閱讀教材P19。

      展示點評:多邊形是怎么組成的?常見的多邊形有哪些?邊數(shù)最少的多邊形是幾邊形?什么是多邊形的邊、內(nèi)角、外角?

      小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?

      反思小結(jié):多邊形的定義及相關(guān)概念。

      針對訓練:見《學生用書》相應(yīng)部分

      多邊形的對角線

      活動二:(1)十邊形的對角線有35條。

     。2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。

      展示點評:結(jié)合圖形說明什么是多邊形的對角線?三角形是否有對角線?從五邊形的一個頂點出發(fā)可以引幾條對角線?五邊形有幾條對角線?從n邊形的一個頂點出發(fā)可以引幾條對角線?n邊形有多少條對角線?表達式中的(n—3)是什么意思?為什么要除以2?

      反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。

      小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?

      針對訓練:見《學生用書》相應(yīng)部分

      正多邊形的有關(guān)概念

      活動二:閱讀教材P20。

      展示點評:畫圖說明什么是凸多邊形和凹多邊形?正多邊形要求的條件是什么?邊數(shù)最少的.正多邊形是什么?

      小組討論:判斷一個多邊形是否是正多邊形的條件?

      反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。

      針對訓練:見《學生用書》相應(yīng)部分

      四、總結(jié)梳理,內(nèi)化目標

      本節(jié)學習的數(shù)學知識是:

      1、多邊形、多邊形的外角,多邊形的對角線。

      2、凸凹多邊形的概念。

      五、達標檢測,反思目標

      1、下列敘述正確的是(D)

      A、每條邊都相等的多邊形是正多邊形

      B、如果畫出多邊形某一條邊所在的直線,這個多邊形都在這條直線的同一側(cè),那么它一定是凸多邊形

      C、每個角都相等的多邊形叫正多邊形

      D、每條邊、每個角都相等的多邊形叫正多邊形

      2、小學學過的下列圖形中不可能是正多邊形的是(D)

      A、三角形B。正方形C。四邊形D。梯形

      3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。

      4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。

    八年級數(shù)學的教案15

      教學目標:

      1、本節(jié)課使學生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根.

      2、使學生掌握運用去分母或換元的方法解可化為一元二次方程的分式方程;使學生理解轉(zhuǎn)化的數(shù)學基本思想;

      3、使學生能夠利用最簡公分母進行驗根.

      教學重點:

      可化為一元二次方程的分式方程的解法.

      教學難點:

      教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.

      教學過程:

      在初二我們已經(jīng)學過分式方程的概念及可化為一元一次方程的分式方程的解法,知道了解可化為一元一次方程的分式方程的解題步驟以及驗根的目的,了解了轉(zhuǎn)化的思想方法的基本運用.今天,我們將在此基礎(chǔ)上,來學習可化為一元二次方程的分式方程的解法.“12.7節(jié)”是在學生已經(jīng)掌握的同類型的方程的解法,直接點出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相類同,及產(chǎn)生增根的原因,以激發(fā)學生歸納總結(jié)的欲望,使學生理解類比方法在數(shù)學解題中的`重要性,使學生進一步加深對“轉(zhuǎn)化”這一基本數(shù)學思想的理解,抓住學生的注意力,同時可以激起學生探索知識的欲望.

      為了使學生能進一步加深對“類比”、“轉(zhuǎn)化”的理解,可以通過回憶復習可化為一元一次方程的分式方程的解法,探求解可化為一元二次方程的分式方程的解法,同時通過對產(chǎn)生增根的分析,來達到學生對“類比”的方法及“轉(zhuǎn)化”的基本數(shù)學思想在數(shù)學學習中的重要性的理解,從而調(diào)動學生能積極主動地參與到教學活動中去.

      一、新課引入:

      1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?

      2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?

      3、產(chǎn)生增根的原因是什么?.

      二、新課講解:

      通過新課引入,可直接點出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程及其解法,類比地提出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相同.

      點出本節(jié)內(nèi)容的處理方法與以前所學的知識完全類同后,讓全體學生對照前面復習過的分式方程的解,來進一步加深對“類比”法的理解,以便學生全面地參與到教學活動中去,全面提高教學質(zhì)量.

      在前面的基礎(chǔ)上,為了加深學生對新知識的理解,與學生共同分析解決例題,以提高學生分析問題和解決問題的能力.

    【八年級數(shù)學的教案】相關(guān)文章:

    八年級數(shù)學教案02-13

    八年級數(shù)學下冊教案05-19

    (優(yōu))八年級數(shù)學下冊教案05-22

    八年級數(shù)學上冊的教案07-10

    八年級數(shù)學上冊教案06-08

    數(shù)學的教案07-24

    關(guān)于八年級數(shù)學教案示例:分式10-17

    小學數(shù)學數(shù)學教案03-05

    小學數(shù)學的教案07-02

    《數(shù)學宮》教案09-29