人妻丰满熟妇无码区乱com|久久婷婷午夜精品二区|一道本国产不卡视频|国产孕妇故爱A级高清片免费看

<tbody id="geoqw"></tbody>
  • <center id="geoqw"></center>
  • <menu id="geoqw"></menu>
  • <center id="geoqw"></center>
    
    <menu id="geoqw"></menu>
  • 學(xué)好函數(shù)的四大方法

    時(shí)間:2024-10-09 14:00:46 維澤 學(xué)習(xí)方法 我要投稿
    • 相關(guān)推薦

    學(xué)好函數(shù)的四大方法

      函數(shù)是整個(gè)高考的重中之重,尤其對(duì)二次函數(shù)的相關(guān)考察會(huì)更多。所以同學(xué)們不能對(duì)這一塊的知識(shí)掉以輕心。更多相關(guān)信息請(qǐng)關(guān)注相應(yīng)欄目!

      一、學(xué)數(shù)學(xué)就像玩游戲,想玩好游戲,當(dāng)然先要熟悉游戲規(guī)則。

      而在數(shù)學(xué)當(dāng)中,游戲規(guī)則就是所謂的基本定義。想學(xué)好函數(shù),第一要牢固掌握基本定義及對(duì)應(yīng)的圖像特征,如定義域,值域,奇偶性,單調(diào)性,周期性,對(duì)稱軸等。

      很多同學(xué)都進(jìn)入一個(gè)學(xué)習(xí)函數(shù)的誤區(qū),認(rèn)為只要掌握好的做題方法就能學(xué)好數(shù)學(xué),其實(shí)應(yīng)該首先應(yīng)當(dāng)掌握最基本的定義,在此基礎(chǔ)上才能學(xué)好做題的方法,所有的做題方法要成立歸根結(jié)底都必須從基本定義出發(fā),最好掌握這些定義和性質(zhì)的代數(shù)表達(dá)以及圖像特征。

      二、牢記幾種基本初等函數(shù)及其相關(guān)性質(zhì)、圖象、變換。

      中學(xué)就那么幾種基本初等函數(shù):一次函數(shù)(直線方程)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、正弦余弦函數(shù)、正切余切函數(shù),所有的函數(shù)題都是圍繞這些函數(shù)來出的,只是形式不同而已,最終都能靠基本知識(shí)解決。

      還有三種函數(shù),盡管課本上沒有,但是在高考以及自主招生考試中都經(jīng)常出現(xiàn)的對(duì)勾函數(shù):y=ax+b/x,含有絕對(duì)值的函數(shù),三次函數(shù)。這些函數(shù)的定義域、值域、單調(diào)性、奇偶性等性質(zhì)和圖像等各方面的特征都要好好研究。

      三、圖像是函數(shù)之魂!要想學(xué)好做好函數(shù)題,必須充分關(guān)注函數(shù)圖象問題。

      翻閱歷年高考函數(shù)題,有一個(gè)算一個(gè),幾乎百分之八十的函數(shù)問題都與圖像有關(guān)。這就要求同學(xué)們?cè)趯W(xué)習(xí)函數(shù)時(shí)多多關(guān)注函數(shù)的圖像,要會(huì)作圖、會(huì)看圖、會(huì)用圖!多多關(guān)注函數(shù)圖象的平移、放縮、翻轉(zhuǎn)、旋轉(zhuǎn)、復(fù)合與疊加等問題。

      四、多做題,多向老師請(qǐng)教,多總結(jié)。

      多做題不是指題海戰(zhàn)術(shù),而是根據(jù)自己的情況,做適當(dāng)?shù)念}目;重點(diǎn)要落在多總結(jié)上,總結(jié)什么呢?總結(jié)題型,總結(jié)方法,總結(jié)錯(cuò)題,總結(jié)思路,總結(jié)知識(shí)等!

      高中數(shù)學(xué)三角函數(shù)的學(xué)習(xí)方法

      (1)、立足課本、抓好基礎(chǔ)

      現(xiàn)在高考非常重視三角函數(shù)圖像與性質(zhì)等基礎(chǔ)知識(shí)的考查,所以在學(xué)習(xí)中首先要打好基礎(chǔ)。

      (2)三角函數(shù)的定義一定要清楚

      我們?cè)趯W(xué)習(xí)三角函數(shù)時(shí),老師就會(huì)強(qiáng)調(diào)我們要把角放在平面直角坐標(biāo)系中去討論。角的頂點(diǎn)放在坐標(biāo)原點(diǎn),始邊放在X 的軸的正半軸上,這樣再?gòu)?qiáng)調(diào)六種三角函數(shù)只與三個(gè)量有關(guān):即角的終邊上任一點(diǎn)的橫坐標(biāo)x、縱坐標(biāo)y 以及這一點(diǎn)到原點(diǎn)的距離r 中取兩個(gè)量組成的比值,這里得強(qiáng)調(diào)一下,對(duì)于任意一個(gè)α一經(jīng)確定,它所對(duì)的每一個(gè)比值是唯一確定的,也就說是它們之間滿足函數(shù)關(guān)系。并且三者的關(guān)系是,x2+y2=r2,x,y 可以任意取值,r 只能取正數(shù)。

      (3)同角的三角函數(shù)關(guān)系

      同角的三角函數(shù)關(guān)系可以分為平方關(guān)系:sin2α+cos2α=1、tan2α+1= sec2α、cotα2+1= csc2α,倒數(shù)關(guān)系:tanαcotα=1,商的關(guān)系:tanα=sinα/cosα等等,對(duì)于同角的三角函數(shù),直接用三角函數(shù)的定義證明比較容易,記憶也比較方便,相關(guān)角的三角函數(shù)的關(guān)系可以分為終邊相同的角、終邊關(guān)于x 軸對(duì)稱的角、終邊關(guān)于直線y=x 對(duì)稱的角、終邊關(guān)于y 軸對(duì)稱的角、終邊關(guān)于原點(diǎn)對(duì)稱的角五種關(guān)系。

      (4)加強(qiáng)三角函數(shù)應(yīng)用意識(shí)

      三角函數(shù)產(chǎn)生于生產(chǎn)實(shí)踐,也被廣泛應(yīng)用與實(shí)踐,因此,應(yīng)該培養(yǎng)我們對(duì)三角函數(shù)的應(yīng)用能力。

      二次函數(shù)學(xué)習(xí)方法

      中考數(shù)學(xué)二次函數(shù)解題方法

      1、“某圖象上是否存在一點(diǎn),使之與另外三個(gè)點(diǎn)構(gòu)成平行四邊形”問題:

      這類問題,在題中的四個(gè)點(diǎn)中,至少有兩個(gè)定點(diǎn),用動(dòng)點(diǎn)坐標(biāo)“一母示”分別設(shè)出余下所有動(dòng)點(diǎn)的坐標(biāo)(若有兩個(gè)動(dòng)點(diǎn),顯然每個(gè)動(dòng)點(diǎn)應(yīng)各選用一個(gè)參數(shù)字母來“一母示”出動(dòng)點(diǎn)坐標(biāo)),任選一個(gè)已知點(diǎn)作為對(duì)角線的起點(diǎn),列出所有可能的對(duì)角線(顯然最多有3條),此時(shí)與之對(duì)應(yīng)的另一條對(duì)角線也就確定了,然后運(yùn)用中點(diǎn)坐標(biāo)公式,求出每一種情況兩條對(duì)角線的中點(diǎn)坐標(biāo),由平行四邊形的判定定理可知,兩中點(diǎn)重合,其坐標(biāo)對(duì)應(yīng)相等,列出兩個(gè)方程,求解即可。

      進(jìn)一步有:

     、偃羰欠翊嬖谶@樣的動(dòng)點(diǎn)構(gòu)成矩形呢?先讓動(dòng)點(diǎn)構(gòu)成平行四邊形,再驗(yàn)證兩條對(duì)角線相等否?若相等,則所求動(dòng)點(diǎn)能構(gòu)成矩形,否則這樣的動(dòng)點(diǎn)不存在。

     、谌羰欠翊嬖谶@樣的動(dòng)點(diǎn)構(gòu)成棱形呢?先讓動(dòng)點(diǎn)構(gòu)成平行四邊形,再驗(yàn)證任意一組鄰邊相等否?若相等,則所求動(dòng)點(diǎn)能構(gòu)成棱形,否則這樣的動(dòng)點(diǎn)不存在。

     、廴羰欠翊嬖谶@樣的動(dòng)點(diǎn)構(gòu)成正方形呢?先讓動(dòng)點(diǎn)構(gòu)成平行四邊形,再驗(yàn)證任意一組鄰邊是否相等?和兩條對(duì)角線是否相等?若都相等,則所求動(dòng)點(diǎn)能構(gòu)成正方形,否則這樣的動(dòng)點(diǎn)不存在。

      2.“拋物線上是否存在一點(diǎn),使兩個(gè)圖形的面積之間存在和差倍分關(guān)系”的問題:(此為“單動(dòng)問題”〈即定解析式和動(dòng)圖形相結(jié)合的問題〉,后面的19實(shí)為本類型的特殊情形。)

      先用動(dòng)點(diǎn)坐標(biāo)“一母示”的方法設(shè)出直接動(dòng)點(diǎn)坐標(biāo),分別表示(如果圖形是動(dòng)圖形就只能表示出其面積)或計(jì)算(如果圖形是定圖形就計(jì)算出它的具體面積),然后由題意建立兩個(gè)圖形面積關(guān)系的一個(gè)方程,解之即可。(注意去掉不合題意的點(diǎn)),如果問題中求的是間接動(dòng)點(diǎn)坐標(biāo),那么在求出直接動(dòng)點(diǎn)坐標(biāo)后,再往下繼續(xù)求解即可。

      3.“某圖形〈直線或拋物線〉上是否存在一點(diǎn),使之與另兩定點(diǎn)構(gòu)成直角三角形”的問題:

      若夾直角的兩邊與y軸都不平行:先設(shè)出動(dòng)點(diǎn)坐標(biāo)(一母示),視題目分類的情況,分別用斜率公式算出夾直角的兩邊的斜率,再運(yùn)用兩直線(沒有與y軸平行的直線)垂直的斜率結(jié)論(兩直線的斜率相乘等于-1),得到一個(gè)方程,解之即可。

      若夾直角的兩邊中有一邊與y軸平行,此時(shí)不能使用斜率公式。補(bǔ)救措施是:過余下的那一個(gè)點(diǎn)(沒在平行于y軸的那條直線上的點(diǎn))直接向平行于y的直線作垂線或過直角點(diǎn)作平行于y軸的直線的垂線與另一相關(guān)圖象相交,則相關(guān)點(diǎn)的坐標(biāo)可輕松搞定。

      高一數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)歸納

      I.定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:

      y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

      則稱y為x的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II.二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

      可以看出,二次函數(shù)的圖像是一條拋物線。

      IV.拋物線的性質(zhì)

      1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

      x=-b/2a。

      對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

      特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

      2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

      P(-b/2a,(4ac-b^2)/4a)

      當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

      當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

      |a|越大,則拋物線的開口越小。4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

      5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點(diǎn)個(gè)數(shù)

      Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

      Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

      Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

      V.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

      即ax^2+bx+c=0

      此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

      函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:

      解析式

      頂點(diǎn)坐標(biāo)

      對(duì)稱軸

      y=ax^2

      (0,0)

      x=0

      y=a(x-h)^2

      (h,0)

      x=h

      y=a(x-h)^2+k

      (h,k)

      x=h

      y=ax^2+bx+c

      (-b/2a,[4ac-b^2]/4a)

      x=-b/2a

      當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

      當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

      當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

      當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

      2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

      3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

      二次函數(shù)性質(zhì)

      一、定義與定義式:

      自變量x和因變量y有如下關(guān)系:

      y=kx+b

      則此時(shí)稱y是x的一次函數(shù)。

      特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

      即:y=kx(k為常數(shù),k≠0)

      二、一次函數(shù)的性質(zhì):

      1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

      即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

      2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

      三、一次函數(shù)的圖像及性質(zhì):

      1.作法與圖形:通過如下3個(gè)步驟

      (1)列表;

      (2)描點(diǎn);

      (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

      2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

      3.k,b與函數(shù)圖像所在象限:

      當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

      當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

      當(dāng)b>0時(shí),直線必通過一、二象限;

      當(dāng)b=0時(shí),直線通過原點(diǎn)

      當(dāng)b<0時(shí),直線必通過三、四象限。

      特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

      四、確定一次函數(shù)的表達(dá)式:

      已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

      (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

      (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

      (3)解這個(gè)二元一次方程,得到k,b的值。

      (4)最后得到一次函數(shù)的表達(dá)式。

    【學(xué)好函數(shù)的四大方法】相關(guān)文章:

    初中數(shù)學(xué)如何學(xué)好方法05-02

    初中數(shù)學(xué)四大函數(shù)輕松學(xué)12-07

    如何學(xué)好初中數(shù)學(xué)最有效的方法10-31

    如何學(xué)好高中英語(yǔ)的方法06-25

    學(xué)好高中數(shù)學(xué)的方法與建議11-07

    2017精選學(xué)好高中數(shù)學(xué)的方法和訣竅11-26

    學(xué)霸學(xué)好高中數(shù)學(xué)的超實(shí)用方法11-26

    高等數(shù)學(xué)學(xué)習(xí)指導(dǎo):學(xué)好高等數(shù)學(xué)四大關(guān)鍵11-26

    名師指導(dǎo)六大方法幫助高中女生學(xué)好數(shù)學(xué)11-27

    2017最新關(guān)于高中數(shù)學(xué)的四大簡(jiǎn)單記憶方法11-26