人妻丰满熟妇无码区乱com|久久婷婷午夜精品二区|一道本国产不卡视频|国产孕妇故爱A级高清片免费看

<tbody id="geoqw"></tbody>
  • <center id="geoqw"></center>
  • <menu id="geoqw"></menu>
  • <center id="geoqw"></center>
    
    <menu id="geoqw"></menu>
  • 二次函數(shù)的圖象和性質(zhì)數(shù)學教案

    時間:2022-10-11 12:46:14 數(shù)學教案 我要投稿
    • 相關(guān)推薦

    二次函數(shù)的圖象和性質(zhì)數(shù)學教案

      教學目標

    二次函數(shù)的圖象和性質(zhì)數(shù)學教案

      【知識與技能】

      使學生會用描點法畫出函數(shù)y=ax2的圖象,理解并掌握拋物線的有關(guān)概念及其性質(zhì).

      【過程與方法】

      使學生經(jīng)歷探索二次函數(shù)y=ax2的圖象及性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗,培養(yǎng)學生分析、解決問題的能力.

      【情感、態(tài)度與價值觀】

      使學生經(jīng)歷探索二次函數(shù)y=ax2的圖象和性質(zhì)的過程,培養(yǎng)學生觀察、思考、歸納的良好思維品質(zhì).

      重點難點

      【重點】

      使學生理解拋物線的有關(guān)概念及性質(zhì),會用描點法畫出二次函數(shù)y=ax2的圖象.

      【難點】

      用描點法畫出二次函數(shù)y=ax2的圖象以及探索二次函數(shù)的性質(zhì).

      教學過程

      一、問題引入

      1.一次函數(shù)的圖象是什么?反比例函數(shù)的圖象是什么?

      (一次函數(shù)的圖象是一條直線,反比例函數(shù)的圖象是雙曲線.)

      2.畫函數(shù)圖象的一般步驟是什么?

      一般步驟:(1)列表(取幾組x,y的對應(yīng)值);(2)描點(根據(jù)表中x,y的數(shù)值在坐標平面中描點(x,y));(3)連線(用平滑曲線).

      3.二次函數(shù)的圖象是什么形狀?二次函數(shù)有哪些性質(zhì)?

      (運用描點法作二次函數(shù)的圖象,然后觀察、分析并歸納得到二次函數(shù)的性質(zhì).)

      二、新課教授

      【例1】 畫出二次函數(shù)y=x2的圖象.

      解:(1)列表中自變量x可以是任意實數(shù),列表表示幾組對應(yīng)值.

      (2)描點:根據(jù)上表中x,y的數(shù)值在平面直角坐標系中描點(x,y).

      (3)連線:用平滑的曲線順次連接各點,得到函數(shù)y=x2的圖象,如圖所示.

      思考:觀察二次函數(shù)y=x2的圖象,思考下列問題:

      (1)二次函數(shù)y=x2的圖象是什么形狀?

      (2)圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?

      (3)圖象有最低點嗎?如果有,最低點的坐標是什么?

      師生活動:

      教師引導學生在平面直角坐標系中畫出二次函數(shù)y=x2的圖象,通過數(shù)形結(jié)合解決上面的3個問題.

      學生動手畫圖,觀察、討論并歸納,積極展示探究結(jié)果,教師評價.

      函數(shù)y=x2的圖象是一條關(guān)于y軸(x=0)對稱的曲線,這條曲線叫做拋物線.實際上二次函數(shù)的圖象都是拋物線.二次函數(shù)y=x2的圖象可以簡稱為拋物線y=x2.

      由圖象可以看出,拋物線y=x2開口向上;y軸是拋物線y=x2的對稱軸:拋物線y=x2與它的對稱軸的交點(0,0)叫做拋物線的頂點,它是拋物線y=x2的最低點.實際上每條拋物線都有對稱軸,拋物線與對稱軸的交點叫做拋物線的頂點,頂點是拋物線的最低點或最高點.

      【例2】 在同一直角坐標系中,畫出函數(shù)y=x2及y=2x2的圖象.

      解:分別填表,再畫出它們的圖象.

      思考:函數(shù)y=x2、y=2x2的圖象與函數(shù)y=x2的圖象有什么共同點和不同點?

      師生活動:

      教師引導學生在平面直角坐標系中畫出二次函數(shù)y=x2、y=2x2的圖象.

      學生動手畫圖,觀察、討論并歸納,回答探究的思路和結(jié)果,教師評價.

      拋物線y=x2、y=2x2與拋物線y=x2的開口均向上,頂點坐標都是(0,0),函數(shù)y=2x2的圖象的開口較窄,y=x2的圖象的開口較大.

      探究1:畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,并考慮這些圖象有什么共同點和不同點。

      師生活動:

      學生在平面直角坐標系中畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,觀察、討論并歸納.教師巡視學生的探究情況,若發(fā)現(xiàn)問題,及時點撥.

      學生匯報探究的思路和結(jié)果,教師評價,給出圖形.

      拋物線y=-x2、y=-x2、y=-2x2開口均向下,頂點坐標都是(0,0),函數(shù)y=-2x2的圖象開口最窄,y=-x2的圖象開口最大.

      探究2:對比拋物線y=x2和y=-x2,它們關(guān)于x軸對稱嗎?拋物線y=ax2和y=-ax2呢?

      師生活動:

      學生在平面直角坐標系中畫出函數(shù)y=x2和y=-x2的圖象,觀察、討論并歸納.

      教師巡視學生的探究情況,發(fā)現(xiàn)問題,及時點撥.

      學生匯報探究思路和結(jié)果,教師評價,給出圖形.

      拋物線y=x2、y=-x2的圖象關(guān)于x軸對稱.一般地,拋物線y=ax2和y=-ax2的圖象也關(guān)于x軸對稱.

      教師引導學生小結(jié)(知識點、規(guī)律和方法).

      一般地,拋物線y=ax2的對稱軸是y軸,頂點是原點.當a0時,拋物線y=ax2的開口向上,頂點是拋物線的最低點,當a越大時,拋物線的開口越小;當a0時,拋物線y=ax2的開口向下,頂點是拋物線的最高點,當a越大時,拋物線的開口越大.

      從二次函數(shù)y=ax2的圖象可以看出:如果a0,當x0時,y隨x的增大而減小,當x0時,y隨x的增大而增大;如果a0,當x0時,y隨x的增大而增大,當x0時,y隨x的增大而減小.

      三、鞏固練習

      1.拋物線y=-4x2-4的開口向,頂點坐標是,對稱軸是,當x=時,y有最值,是.

      【答案】下 (0,-4) x=0 0 大 -4

      2.當m≠時,y=(m-1)x2-3m是關(guān)于x的二次函數(shù).

      【答案】1

      3.已知拋物線y=-3x2上兩點A(x,-27),B(2,y),則x=,y=.

      【答案】-3或3 -12

      4.拋物線y=3x2與直線y=kx+3的交點坐標為(2,b),則k=,b=.

      【答案】 12

      5.已知拋物線的頂點在原點,對稱軸為y軸,且經(jīng)過點(-1,-2),則拋物線的表達式為.

      【答案】y=-2x2

      6.在同一坐標系中,圖象與y=2x2的圖象關(guān)于x軸對稱的是()

      A.y=x2B.y=x2

      C.y=-2x2 D.y=-x2

      【答案】C

      7.拋物線y=4x2、y=-2x2、y=x2的圖象,開口最大的是()

      A.y=x2 B.y=4x2

      C.y=-2x2 D.無法確定

      【答案】A

      8.對于拋物線y=x2和y=-x2在同一坐標系中的位置,下列說法錯誤的是()

      A.兩條拋物線關(guān)于x軸對稱

      B.兩條拋物線關(guān)于原點對稱

      C.兩條拋物線關(guān)于y軸對稱

      D.兩條拋物線的交點為原點

      【答案】C

      四、課堂小結(jié)

      1.二次函數(shù)y=ax2的圖象過原點且關(guān)于y軸對稱,自變量x的取值范圍是一切實數(shù).

      2.二次函數(shù)y=ax2的性質(zhì):拋物線y=ax2的對稱軸是y軸,頂點是原點.當a0時,拋物線y=x2開口向上,頂點是拋物線的最低點,當a越大時,拋物線的開口越小;當a0時,拋物線y=ax2開口向下,頂點是拋物線的最高點,當a越大時,拋物線的開口越大.

      3.二次函數(shù)y=ax2的圖象可以通過列表、描點、連線三個步驟畫出來.

      教學反思

      本節(jié)課的內(nèi)容主要研究二次函數(shù)y=ax2在a取不同值時的圖象,并引出拋物線的有關(guān)概念,再根據(jù)圖象總結(jié)拋物線的有關(guān)性質(zhì).整個內(nèi)容分成:(1)例1是基礎(chǔ);(2)在例1的基礎(chǔ)之上引入例2,讓學生體會a的大小對拋物線開口寬闊程度的影響;(3)例2及后面的練習探究讓學生領(lǐng)會a的正負對拋物線開口方向的影響;(4)最后讓學生比較例1和例2,練習歸納總結(jié).

    【二次函數(shù)的圖象和性質(zhì)數(shù)學教案】相關(guān)文章:

    《函數(shù)的圖象》數(shù)學教案10-16

    關(guān)于二次函數(shù)的圖像與性質(zhì)的數(shù)學教案(精選9篇)01-02

    《二次函數(shù)》數(shù)學教案(精選10篇)12-02

    《二次函數(shù)與一元二次方程》數(shù)學教案07-20

    高中數(shù)學冪函數(shù)的性質(zhì)總結(jié)09-19

    Excel日期和時間函數(shù)11-27

    高中數(shù)學冪函數(shù)的性質(zhì)知識點10-13

    初二數(shù)學?嫉闹R點:函數(shù)的性質(zhì)04-27

    分數(shù)的意義和性質(zhì)教學設(shè)計04-27

    高中數(shù)學知識點整理:冪函數(shù)的性質(zhì)09-22