人妻丰满熟妇无码区乱com|久久婷婷午夜精品二区|一道本国产不卡视频|国产孕妇故爱A级高清片免费看

<tbody id="geoqw"></tbody>
  • <center id="geoqw"></center>
  • <menu id="geoqw"></menu>
  • <center id="geoqw"></center>
    
    <menu id="geoqw"></menu>
  • 數(shù)學(xué)《全等三角形》教案

    時(shí)間:2022-08-31 13:16:59 數(shù)學(xué)教案 我要投稿

    數(shù)學(xué)《全等三角形》教案(通用9篇)

      作為一名無私奉獻(xiàn)的老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么什么樣的教案才是好的呢?下面是小編收集整理的數(shù)學(xué)《全等三角形》教案,僅供參考,歡迎大家閱讀。

    數(shù)學(xué)《全等三角形》教案(通用9篇)

      數(shù)學(xué)《全等三角形》教案 篇1

      【課前準(zhǔn)備】

      1.定義:能夠的兩個(gè)三角形叫全等三角形。

      2.全等三角形的性質(zhì),全等三角形的判定方法見下表。

      【例題講解】

      一.挖掘“隱含條件”判全等

      如圖,△ABE≌△ACD,由此你能得到什么結(jié)論?(越多越好)

      1.如圖AB=CD,AC=BD,則△ABC≌△DCB嗎?說說理由.

      變式訓(xùn)練:AC=BD,∠CAB=∠DBA,試說明:BC=AD

      2.如圖點(diǎn)D在AB上,點(diǎn)E在AC上,CD與BE相交于點(diǎn)O,

      且AD=AE,AB=AC.若∠B=20°,CD=5cm,則∠CD的度數(shù)與BE的長。

      3.如圖若OB=OD,∠A=∠C,若AB=3cm,求CD的長。

      變式訓(xùn)練2,如圖AC=BD,∠C=∠D試說明:(1)AO=BO(2)CO=DO(3)BC=AD

      二.添?xiàng)l件判全等

      1.如圖,已知AD平分∠BAC,要使△ABD≌△ACD,

      根據(jù)“SAS”需要添加條件;

      根據(jù)“ASA”需要添加條件;

      根據(jù)“AAS”需要添加條件.

      2.已知AB//DE,且AB=DE,

      (1)請你只添加一個(gè)條件,使△ABC≌△DEF,

      你添加的條件是.

      三.熟練轉(zhuǎn)化“間接條件”判全等

      1.如圖,AE=CF,∠AFD=∠CEB,DF=BE,△AFD與△CEB全等嗎?

      為什么?

      2.如圖,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC與△ADE全等嗎?為什么?

      3.“三月三,放風(fēng)箏”,如圖是小明同學(xué)制作的風(fēng)箏,他根據(jù)AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,請你用學(xué)過的知識給予說明.

      鞏固練習(xí):如圖,在中,,沿過點(diǎn)B的一條直線BE

      折疊,使點(diǎn)C恰好落在AB變的中點(diǎn)D處,則∠A的度數(shù).

      4.如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,AB=DC,∠B=∠C.說明:∠A=∠D

      【當(dāng)堂反饋】

      1.(2006攀枝花市)如圖,點(diǎn)E在AB上,AC=AD,請你添加一個(gè)條件,使圖中存在全等三角形,并給予證明.所添?xiàng)l件為全等三角形是△≌△

      2.如圖,已知AB=AD,∠B=∠D,∠1=∠2,說明:BC=DE

      3.如圖,已知AB=DE,∠D=∠B,∠EFD=∠BCA,說明:AF=DC

      4.等腰直角△ABC,其中AB=AC,∠BAC=90°,過B、C作經(jīng)過A點(diǎn)直線L的垂線,垂足分別為M、N

      (1)你能找到一對三角形的全等嗎?并說明.

      (2)BM,CN,MN之間有何關(guān)系?

      若將直線l旋轉(zhuǎn)到如下圖的位置,其他條件不變,那么上題的結(jié)論是否依舊成立?

      【課后作業(yè)】

      1.如圖,要用“SAS”說明ΔABC≌ΔADC,若AB=AD,則需要添加的條件是.

      要用“ASA”說明ΔABC≌ΔADC,若∠ACB=∠ACD,則需要添加的條件是.

      2..如圖,在ΔABC中,AD⊥BC,CE⊥AB.垂足分別為D.E,AD.CE交于點(diǎn)H,請你添加一個(gè)適當(dāng)?shù)臈l件:,使ΔAEH≌ΔCEB.

      (第3題)

      (第4題)(第5題)(第6題)

      3.如圖,已知AD平分∠BAC,AB=AC,則此圖中全等三角形有()

      A..2對B.3對C.4對D.5對

      4.如圖,ΔABC中,AB=AC,BE=EC,則由“SSS”可判定()

      A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不對

      5.如圖,Rt△ABC中,∠C=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且其中一個(gè)是等腰三角形.(保留作圖痕跡,不要求寫作法和證明).

      6.如圖,一個(gè)六邊形鋼架ABCDEF,由6條鋼管連接而成,為使這一鋼架穩(wěn)固,請你用3條鋼管使它不能活動(dòng),你能設(shè)計(jì)兩種不同的方案嗎?

      7:如圖11-9在△ABC中.⑴分別以AB、AC為邊向形外作正方形ABDE、ACFG.

      試說明:①CE=BG;②CE⊥BG;

     、迫鐖D11-10分別以AB、AC為邊向形外作正三角形△ABD、△ACE.

      試說明:①CD=BE;②求CD和BE所成的銳角的度數(shù).

      【拓展延伸】

      如圖①,E、F分別為線段AC上的兩個(gè)動(dòng)點(diǎn),且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于點(diǎn)M.(1)求證:MB=MD,ME=MF

      (2)當(dāng)E、F兩點(diǎn)移動(dòng)到如圖②的位置時(shí),其余條件不變,上述結(jié)論能否成立?若成立請給予證明;若不成立請說明理由.

      數(shù)學(xué)《全等三角形》教案 篇2

      教材分析

      利用教科書提供的素材和活動(dòng),鼓勵(lì)學(xué)生經(jīng)歷觀察、操作、推理、想象等活動(dòng),發(fā)展學(xué)生的空間觀念,體會(huì)分析問題、解決問題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。培養(yǎng)學(xué)生有條理的思考,表達(dá)和交流的能力,并且在以直觀操作的基礎(chǔ)上,將直觀與簡單推理相結(jié)合,注意學(xué)生推理意識的建立和對推理過程的理解,能運(yùn)用自己的方式有條理的表達(dá)推理過程,為以后的證明打下基礎(chǔ)。

      學(xué)情分析

      學(xué)生通過前面的學(xué)習(xí)已了解了圖形的全等的概念及特征,掌握了全等圖形的對應(yīng)邊、對應(yīng)角的關(guān)系,這為探究三角形全等的條件做好了知識上的準(zhǔn)備。另外,學(xué)生也具備了利用已知條件作三角形的基本作圖能力,這使學(xué)生能主動(dòng)參與本節(jié)課的操作、探究成為可能。

      教學(xué)目標(biāo)

     。1)學(xué)生在教師引導(dǎo)下,積極主動(dòng)地經(jīng)歷探索三角形全等的條件的過程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程。

     。2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實(shí)際問題。

     。3)培養(yǎng)學(xué)生的空間觀念,推理能力,發(fā)展有條理地表達(dá)能力,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):三角形全等條件的探索過程是本節(jié)課的重點(diǎn)。

      從設(shè)置情景提出問題,到動(dòng)手操作,交流,直至歸納得出結(jié)論,整個(gè)過程學(xué)生不僅得到了兩個(gè)三角形全等的條件,更重要得是經(jīng)歷了知識的形成過程,體會(huì)了一種分析問題的方法,積累了數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),這將有利于學(xué)生更好的理解數(shù)學(xué),應(yīng)用數(shù)學(xué)。

      難點(diǎn):三角形全等條件的探索過程,特別是創(chuàng)設(shè)出問題后,學(xué)生面對開放性問題,要做出全面、正確得分析,并對各種情況進(jìn)行討論,對初一學(xué)生有一定的難度。

      根據(jù)初一學(xué)生年齡、生理及心理特征,還不具備獨(dú)立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導(dǎo)作用,適時(shí) 點(diǎn)撥、引導(dǎo),盡可能調(diào)動(dòng)所有學(xué)生的積極性、主動(dòng)性參與到合作探討中來,使學(xué)生在與他人的合作交流中獲取新知,并使個(gè)性思維得以發(fā)展。

      教學(xué)過程

      一、回顧概念整合知識以提問的方式引出本節(jié)課的教學(xué)內(nèi)容:

      問題1通過調(diào)查你對商品的標(biāo)價(jià)、售價(jià)、進(jìn)價(jià)和利潤、利潤率這些概念清楚了嗎?你能列出它們之間的關(guān)系式嗎?

     。▽W(xué)生板書寫出三個(gè)基本關(guān)系式)

      教師引導(dǎo)得出變形關(guān)系式:利潤=進(jìn)價(jià) × 利潤率.

      設(shè)計(jì)意圖通過調(diào)查使學(xué)生對商品銷售過程所涉及的基本量、基本關(guān)系式有初步的了解,為后續(xù)的學(xué)習(xí)作好鋪墊.

      二、強(qiáng)化練習(xí)鞏固概念

      問題2運(yùn)用基本關(guān)系式來做一組練習(xí).

     。保绻闱虻倪M(jìn)價(jià)是每個(gè)a元,超市按進(jìn)價(jià)提高30%后標(biāo)價(jià),則標(biāo)價(jià)是多少元?

     。玻绻闱虻倪M(jìn)價(jià)是每個(gè)a元,標(biāo)價(jià)是每個(gè)150元,現(xiàn)7折優(yōu)惠,則每個(gè)足球的利潤是多少元?

     。常绻闱虻倪M(jìn)價(jià)是每個(gè)a元,賣出后盈利25%,則每個(gè)足球的利潤是多少?

     。矗绻闱虻倪M(jìn)價(jià)是每個(gè)a元,賣出后虧損25%,則每個(gè)足球的利潤是多少?

      設(shè)計(jì)意圖通過題組練習(xí)使學(xué)生熟練掌握進(jìn)價(jià)、標(biāo)價(jià)、利潤、利潤率之間的關(guān)系,進(jìn)而促使學(xué)生理解概念.

      三、實(shí)踐應(yīng)用合作交流

      問題3解決調(diào)查編寫的商品銷售方面的有關(guān)問題.

      設(shè)計(jì)意圖通過讓學(xué)生編題互問互檢,學(xué)生間的相互評價(jià),拓展學(xué)生思維,給學(xué)生創(chuàng)造一個(gè)合作交流和表現(xiàn)發(fā)揮的舞臺,讓學(xué)生充分體驗(yàn)成功后的喜悅.

      四、聯(lián)系實(shí)際探究新知

      問題4某商店在某一時(shí)間以每件60元的價(jià)格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的是盈利還是虧損,或是不盈不虧?

      教師在學(xué)生獨(dú)立思考幾分鐘后讓學(xué)生估算并簡單說出估算的理由,估算對否不給予評判,告訴學(xué)生估算對不對還要進(jìn)行計(jì)算. 如何計(jì)算學(xué)生先獨(dú)立思考,然后同桌交流,最后請一名同學(xué)到黑板板演利用一元一次方程解決此實(shí)際問題全部過程,其他同學(xué)在底下完成. 完成后同學(xué)間相互評價(jià). 最后教師指出解決問題的關(guān)鍵——尋找等量關(guān)系,教師再進(jìn)一步用估算方法分析虧損的原因.

      設(shè)計(jì)意圖在學(xué)生基本掌握解決有關(guān)商品銷售問題的基礎(chǔ)上對所學(xué)內(nèi)容進(jìn)行拓展,延伸. 設(shè)計(jì)開放性問題的目的是通過本題的講解使學(xué)生靈活運(yùn)用本節(jié)的知識解決生活中的實(shí)際問題,也使全體學(xué)生在獲得必要發(fā)展的前題下,不同的學(xué)生獲得不同的體驗(yàn).

      五、鞏固練習(xí)當(dāng)堂反饋

      問題5若某商品因庫存積壓,準(zhǔn)備打折出售,如果按定價(jià)的7.5折出售將賠25元,而按定價(jià)的9折出售將賺20元. 該商品定價(jià)是多少元?

     。ㄍ瑢W(xué)們思考后各自獨(dú)立完成,然后同學(xué)互判)設(shè)計(jì)意圖本節(jié)課對學(xué)生來說是一個(gè)難點(diǎn),因此設(shè)計(jì)反饋這一環(huán)節(jié)很有必要,便于教師掌握學(xué)生學(xué)習(xí)的情況.

      六、布置作業(yè)課后延伸

      設(shè)計(jì)意圖加深學(xué)生對知識的鞏固;是課堂教學(xué)內(nèi)容的延

      數(shù)學(xué)《全等三角形》教案 篇3

      一、引言

      根據(jù)《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》具體目標(biāo),結(jié)合學(xué)生已有的知識經(jīng)驗(yàn)和認(rèn)知水平,提供具有探究性的問題,讓學(xué)生主動(dòng)參與到解決問題的數(shù)學(xué)活動(dòng)中,理性思考、大膽猜測,合理推斷,從何培養(yǎng)學(xué)生的邏輯思維能力,發(fā)展學(xué)生的數(shù)學(xué)觀念和數(shù)學(xué)思想,使學(xué)生形成良好的思維品質(zhì),達(dá)到啟迪思維、開發(fā)智力的目的。此案例就構(gòu)造三角形全等為例,談?wù)勗谡n堂教學(xué)中如何發(fā)展學(xué)生的直覺思維,培養(yǎng)其創(chuàng)新意識。

      二、全等三角形知識點(diǎn)的地位和作用

      全等三角形體現(xiàn)的是一種十分重要的保距變換,許多圖形中線段之間,角之間的相互關(guān)系經(jīng)常通過三角形全等來判斷、得出,三角形全等還是基本尺規(guī)作圖的根本依據(jù)。由于全等三角形的判定及對全等三角形邊、角之間的關(guān)系處理涉及推理,因此通過學(xué)習(xí)全等三角形知識對培養(yǎng)學(xué)生的邏輯推理和表達(dá)能力有著非常重要的作用。

      三、全等三角形判定教學(xué)例子

      假設(shè)情景:

      某次組織學(xué)生參加生日聚會(huì),需要裁剪小旗幟,如何讓小旗幟和第一個(gè)剪裁的大小完全相同呢?

      由學(xué)生嘗試把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題:怎樣畫一個(gè)三角形與已知三角形全等?在解決這個(gè)問題的過程中,鼓勵(lì)學(xué)生大膽猜想,激發(fā)同學(xué)們的主動(dòng)性和創(chuàng)造性。學(xué)生可能會(huì)提出:測出參照三條邊的長度,或量出三個(gè)角的度數(shù),或測量一條邊、一個(gè)角的方案等。對于這些方案教師不急于評價(jià),先引導(dǎo)學(xué)生分析各種方案的共同特點(diǎn):都是先通過已知三角形的邊、角的條件畫出一個(gè)三角形與原三角形全等;不同點(diǎn)是所需條件的個(gè)數(shù)不同。學(xué)生的思維在此產(chǎn)生碰撞:誰的想法可行呢?要使兩個(gè)三角形全等到底需要滿足哪些條件?進(jìn)一步明確本節(jié)課研究的方向,引出課題。

      學(xué)生在探究過程中會(huì)根據(jù)已有的知識積累,利用“幾何畫板”作圖探究,舉出反例來說明已知一個(gè)條件或兩個(gè)條件畫出的三角形與已知三角形不一定全等,這時(shí)教師鼓勵(lì)學(xué)生畫出盡可能類型的反例,并引導(dǎo)學(xué)生將舉出的反例進(jìn)行分類,初步體驗(yàn)分類的數(shù)學(xué)思想,為下一步已知三個(gè)條件畫出三角形與已知三角形全等打下基礎(chǔ)。

      在討論過程中,教師以合作者的身份深入到小組中,與同學(xué)交流,了解學(xué)生的探究過程并給予適當(dāng)點(diǎn)撥,然后全班交流小組討論結(jié)果,歸納出可能的分類情況:

      按已知三角形邊和角的個(gè)數(shù)可分為:三邊、三角、兩角一邊、兩邊一角。

      個(gè)別小組可能會(huì)提出根據(jù)邊和角的位置關(guān)系,兩邊一角可繼續(xù)分為兩邊及夾角和兩邊及一邊對角,兩角一邊可繼續(xù)分為兩角及夾邊和兩角及一角對邊。

      對學(xué)生的嚴(yán)謹(jǐn)求實(shí)的學(xué)習(xí)態(tài)度教師要給予充分的可定和贊賞。

      在此問題的解決過程中,不僅訓(xùn)練了學(xué)生將知識分類,并使學(xué)生充分感受到團(tuán)隊(duì)合作的重要意義和交流溝通的重要性。在探索過程中,對于三邊、三角、兩角及夾邊、兩邊及夾角這四種情況學(xué)生很容易驗(yàn)證,而只有兩角及一角對邊和兩邊及一邊對角條件是討論的焦點(diǎn)。

      這時(shí),教師留給學(xué)生充分的思考時(shí)間,經(jīng)過交流,學(xué)生能夠得出利用三角形的內(nèi)角和定理,兩角及一角對邊的條件可以轉(zhuǎn)化為兩角及夾邊的情況。而在畫兩邊及一邊對角的三角形時(shí),學(xué)生可能得出這樣幾種結(jié)果:

     。1)畫出的三角形與原三角形全等;(2)畫出的三角形與原三角形不全等;(3)畫出了兩個(gè)三角形;

      此時(shí),留給學(xué)生更多的時(shí)間,充分討論,達(dá)成共識:此條件能夠得到兩個(gè)不同的三角形;為突破該難點(diǎn),教師利用畫板展示作圖過程,深入分析產(chǎn)生兩個(gè)三角形的原因,使學(xué)生進(jìn)一步明確兩邊及一邊對角不能作為判定三角形全等的條件。在此過程中,教師對個(gè)別學(xué)生富有個(gè)性的學(xué)習(xí)表現(xiàn)給予肯定和激勵(lì),讓同學(xué)們感受到成功的喜悅。

      難點(diǎn)的突破力求發(fā)揮自主學(xué)習(xí)的優(yōu)越性,放手讓學(xué)生去探索,在師生互動(dòng)、生生互動(dòng)的氛圍中使學(xué)生思維的靈活性和創(chuàng)造性得到發(fā)展。

      最后展示實(shí)驗(yàn)的結(jié)果,得出一般結(jié)論:根據(jù)三邊、兩邊及夾角、兩角及夾邊、兩角及一角對邊這四種條件畫出的三角形與原三角形全等。

      四、全等三角形的教學(xué)反思

      在三角形全等的教學(xué)過程中,因有實(shí)例比較,學(xué)生對三角形全等的概念理解應(yīng)該不成問題,從整個(gè)初中學(xué)習(xí)過程中來說,三角形全等知識學(xué)習(xí)是學(xué)好其它幾何知識的起步點(diǎn),在八和九年級幾何學(xué)習(xí)中都離不開三角形全等有關(guān)知識,如旋轉(zhuǎn)、軸對稱、園、坐標(biāo)系等,但在學(xué)習(xí)中學(xué)生也存在兩個(gè)主要問題。

     。1)三角形全等的說理表達(dá)

      邏輯語言表達(dá)這個(gè)過程的訓(xùn)練需要逐步進(jìn)行,也就是題目要簡單點(diǎn),敘述過程從兩句即一個(gè)因果開始訓(xùn)練書寫,再到兩個(gè)因果訓(xùn)練,兩個(gè)因果的書寫過程時(shí)間要長一些,因?yàn)閮蓚(gè)因果會(huì)寫了,再多幾個(gè)因果也不太會(huì)出問題了,當(dāng)然在注意書寫要求的同時(shí)還要強(qiáng)調(diào)理解邏輯關(guān)系

     。2)幾何邏輯思維能力培養(yǎng)

      三角形全等知識在培養(yǎng)學(xué)生邏輯語言的同時(shí),更重要的是在培養(yǎng)學(xué)生的邏輯思維能力、空間想象能力,在這一點(diǎn)上學(xué)生間的差異比較明顯,要縮小差距共同提高,培養(yǎng)的關(guān)鍵點(diǎn)是要讓學(xué)生在頭腦中逐漸有幾何圖形的圖形感,能在大腦中思考幾何圖形中的問題,要做到這一點(diǎn),第一步要讓學(xué)生多用實(shí)物例子,多動(dòng)手操作,多回憶見到過的類似圖形,培養(yǎng)圖形感,第二步要做到能在復(fù)雜圖形中分解目標(biāo)圖形,學(xué)會(huì)動(dòng)態(tài)思維,只有這樣才能在復(fù)雜圖形中捕捉、篩選目標(biāo)圖形,培養(yǎng)空間思維能力。

      數(shù)學(xué)《全等三角形》教案 篇4

      教學(xué)目標(biāo)

      一、知識與技能

      1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。

      2、能正確表示兩個(gè)全等三角形,能找出全等三角形的對應(yīng)元素。

      二、過程與方法

      通過觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動(dòng),來感知兩個(gè)三角形全等,以及全等三角形的性質(zhì)。

      三、情感態(tài)度與價(jià)值觀

      通過全等形和全等三角形的學(xué)習(xí),認(rèn)識和熟悉生活中的全等圖形,認(rèn)識生活和數(shù)學(xué)的關(guān)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      教學(xué)重點(diǎn)

      1、全等三角形的性質(zhì)。

      2、在通過觀察、實(shí)際操作來感知全等形和全等三角形的基礎(chǔ)上,形成理性認(rèn)識,理解并掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等。 教學(xué)難點(diǎn) 正確尋找全等三角形的對應(yīng)元素。

      教學(xué)關(guān)鍵

      通過拼圖、對三角形進(jìn)行平移、旋轉(zhuǎn)、翻折等活動(dòng),讓學(xué)生在動(dòng)手操作的過程中,感知全等三角形圖形變換中的對應(yīng)元素的變化規(guī)律,以尋找全等三角形的對應(yīng)點(diǎn)、對應(yīng)邊、對應(yīng)角。

      課前準(zhǔn)備: 教師——————課件、三角板、一對全等三角形硬紙版學(xué)生——————白紙一張、硬紙三角形一個(gè)

      教學(xué)過程設(shè)計(jì)

      一、全等形和全等三角形的概念

      (一)導(dǎo)課:

      教師————(演示課件)廬山風(fēng)景,以詩“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同,不識廬山真面目,只緣身在此山中”指出大自然中廬山的唯一性,但是我們可以通過攝影把廬山的美景拍下來,可以洗出千萬張一模一樣的廬山相片。

      (二)全等形的定義

      象這樣的圖片,形狀和大小都相同。你還能說一說自己身邊還有哪些形狀和大小都相同的圖形嗎?[學(xué)生舉例,集體評析]

      動(dòng)手操作1———在白紙上任意撕一個(gè)圖形,觀察這個(gè)圖形和紙上的空心部分的圖形有什么關(guān)系?你怎么知道的? [板書:能夠完全重合]

      命名:給這樣的圖形起個(gè)名稱————全等形。[板書:全等形]

      剛才大家所舉的各種各樣的形狀大小都相同的圖形,放在一起也能夠完全重合,這樣的圖形也都是全等形。

      (三)全等三角形的定義

      動(dòng)手操作2———制作一個(gè)和自己手里的三角形能夠完全重合的三角形。 定義全等三角形:能夠完全重合的兩個(gè)三角形,叫全等三角形。

     。ㄋ模┏鍪緦W(xué)習(xí)目標(biāo)

      1、 知道什么是全等形,什么是全等三角形。

      2、 能夠找出全等三角形的對應(yīng)元素。

      3、會(huì)正確表示兩個(gè)全等三角形。

      4、掌握全等三角形的性質(zhì)。

      二、全等三角形的對應(yīng)元素及表示

      (一)自學(xué)課本:第1節(jié)內(nèi)容(時(shí)間5分鐘)可以在小組內(nèi)交流。

     。ǘz測:

      1、動(dòng)手操作

      以課本P91頁的思考的操作步驟,抽三個(gè)學(xué)生上黑板完成(即把三角形平移、翻折、旋轉(zhuǎn)后得到新的三角形)

      思考:把三角形平移、翻折、旋轉(zhuǎn)后,什么發(fā)生了變化,什么沒有變?

      歸納:旋轉(zhuǎn)前后的兩個(gè)三角形,位置變化了,但形狀大小都沒有變,它們依然全等。

      2、全等三角形中的對應(yīng)元素

     。ㄒ院诎迳系膱D形為例,圖一、圖二、三學(xué)生獨(dú)立找,集體交流)

     。1)對應(yīng)的頂點(diǎn)(三個(gè))———重合的頂點(diǎn)

      (2)對應(yīng)邊(三條)———重合的邊

     。3)對應(yīng)角(三個(gè))——— 重合的角

      歸納:

      方法一:全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個(gè)對應(yīng)角所夾的邊是對應(yīng)邊;

      方法二:全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角。 另外:有公共邊的,公共邊一定是對應(yīng)邊;有對頂角的,對頂角一定是對應(yīng)角。

      3、用符號表示全等三角形

      抽學(xué)生表示圖一、圖二、三的全等三角形。

      4、全等三角形的性質(zhì)

      思考:全等三角形的對應(yīng)邊、對應(yīng)角有什么關(guān)系?為什么?

      歸納:全等三角形的對應(yīng)邊相等、對應(yīng)角相等。

      請寫出平移、翻折后兩個(gè)全等三角形中相等的角,相等的邊。

      數(shù)學(xué)《全等三角形》教案 篇5

      教材分析

      《三角形全等復(fù)習(xí)課內(nèi)容》選用義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材《數(shù)學(xué)》(華師大版)九年級上冊,三角形全等是初中數(shù)學(xué)中重要的學(xué)習(xí)內(nèi)容之一。本套教材把三角形全等看作是三角形相似的特殊情況,同時(shí)三角形全等的概念,三角形全等的識別方法,與命題與證明,尺規(guī)作圖幾部分內(nèi)容相互聯(lián)系緊密,尤其是尺規(guī)作圖中作法的合理性和正確性的解釋依賴于全等知識。本章中三角形全等的識別方法的給出都通過同學(xué)們畫圖、討論、交流、比較得出,注重同學(xué)們實(shí)際操作能力,為培養(yǎng)同學(xué)們參與意識和創(chuàng)新意識提供了機(jī)會(huì)。

      設(shè)計(jì)理念:

      針對教材內(nèi)容和初三同學(xué)們的實(shí)際情況,組織同學(xué)們通過擺拼全等三角形和探求全等三角形的活動(dòng),讓同學(xué)們感悟到圖形全等與平移、旋轉(zhuǎn)、對稱之間的關(guān)系,并通過同學(xué)們動(dòng)手操作,讓同學(xué)們掌握全等三角形的一些基本形式,在探求全等三角形的過程中,做到有的放矢。然后利用角平分線為對稱軸來畫全等三角形的方法來解決實(shí)際問題,從而達(dá)到會(huì)辨、會(huì)找、會(huì)用全等三角形知識的目的。

      教學(xué)目標(biāo):

      1、通過全等三角形的概念和識別方法的復(fù)習(xí),讓同學(xué)們體會(huì)辨別、探尋、運(yùn)用全等三角形的一般方法,體會(huì)主動(dòng)實(shí)驗(yàn),探究新知的方法。

      2、培養(yǎng)同學(xué)們觀察和理解能力,幾何語言的敘述能力及運(yùn)用全等知識解決實(shí)際問題的能力。

      3、在同學(xué)們操作過程中,激發(fā)同學(xué)們學(xué)習(xí)的興趣,培養(yǎng)同學(xué)們主動(dòng)探索,敢于實(shí)踐的精神,培養(yǎng)同學(xué)們之間合作交流的習(xí)慣。

      教學(xué)的重點(diǎn)和難點(diǎn)

      重點(diǎn):運(yùn)用全等三角形的識別方法來探尋三角形以及運(yùn)用全等三角形的知識解決實(shí)際問題。

      難點(diǎn):運(yùn)用全等三角形知識來解決實(shí)際問題。

      教學(xué)過程設(shè)計(jì):

      一、創(chuàng)設(shè)問題情境:

      某同學(xué)把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全相同的玻璃,那么你認(rèn)為它應(yīng)保留哪一塊?(教師用多媒體)

      師:請同學(xué)們先獨(dú)立思考,然后小組交流意見

      生:…………

      師:上述問題實(shí)質(zhì)是判斷三角形全等需要什么條件的問題。

      今天我們這節(jié)課來復(fù)習(xí)全等三角形。(引出課題)。

      師:識別三角形及等的方法有哪些?

      生:SAS 、 SSS、 ASA、 AAS 、 HL。

      復(fù)習(xí)回顧:練習(xí)1、將兩根鋼條AA/、BB/中點(diǎn)O連在一起,使AA/、BB/繞著點(diǎn)O自由轉(zhuǎn)動(dòng),做成一個(gè)測量工具,則A/B/的長等于內(nèi)槽寬AB,判定△OAB≌△OA/B/現(xiàn)由( )

      練習(xí)2、已知AB//DE,且AB=DE,

     。1)請你只添加一個(gè)條件,使△ABC≌△DEF,

      你添加的條件是

     。2)添加條件后,證明△ABC≌△DEF?

      [根據(jù)不同的添加條件,要求同學(xué)們能夠敘述三角形全等的條件和全等的現(xiàn)由,鼓勵(lì)同學(xué)們大膽的表述意見]

      二、探求新知:

      師:請同學(xué)們將兩張紙疊起來,剪下兩個(gè)全等三角形,然后將疊合的兩個(gè)三角形紙片放在桌面上,從平移、旋轉(zhuǎn)、對稱幾個(gè)方面進(jìn)行擺放,看看兩個(gè)三角形有一些怎樣的特殊位置關(guān)系?

      請同組合作,交流,并把有代表性的擺放進(jìn)行投影。

      熟記全等三角形的基本形式,為探求全等三角形打下基礎(chǔ),提醒同學(xué)們注意兩個(gè)全等三角形的對應(yīng)邊和對應(yīng)角。同學(xué)們的擺放形式很多,包括那些平時(shí)數(shù)學(xué)成績不好的同學(xué)們也躍躍欲試,教師給予肯定和鼓勵(lì)激發(fā)他們學(xué)習(xí)的積極性和主動(dòng)性。

      例1、如圖一張矩形紙片沿著對角線剪開,得到兩張三角形紙片ABC、DEF,再將這兩張三角形紙片擺成右圖的形式,使點(diǎn)B、F、C、D處在同一條直線上,P、M、N為其他直線的交點(diǎn)。

      (1)求證:AB⊥ED

     。2)若PB=BC,請找出右圖中全等三角形,并給予證明。

      用多媒體演示圖形的變化過程。

      師:圖3中AB與ED有怎樣的位置關(guān)系?同同學(xué)們猜想一下結(jié)果。

      生甲:AB垂直ED

      師:為什么?可以從幾方面來考慮?

      生乙:可以從圖形運(yùn)動(dòng)變化的過程來考慮

      生丙:可以考慮全等在已知條件下,顯然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

     。ǜ鶕(jù)同學(xué)們的回答,教師板演)

      師:若PB=BC,找出右圖中全等三角形,看看誰能找得最快?

      生。骸鱌BD≌△CBA(ASA)

      師:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

      師:還有其他三角形全等嗎?

      生:有,我連接BN,由勾股定理得PN=CN,就不難得到△APN≌△DCN。

      (在錯(cuò)綜復(fù)雜的圖形中尋找全等三角形是一件不容易的事,要鼓勵(lì)同學(xué)們大膽的猜想,努力探求,在同學(xué)們的敘述過程中,教師及時(shí)糾正同學(xué)們敘述中的錯(cuò)誤,訓(xùn)練同學(xué)們嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。)

      例2、(動(dòng)手畫)(1)已知OP為∠AOB平分線,請你利用該圖畫一對以O(shè)P所在直線為對稱軸的全等三角形。

      教師在黑板上畫好∠AOB和直線OP,同學(xué)們獨(dú)立思考,然后請幾個(gè)同學(xué)們在黑板上演示。

      師生總結(jié):想要畫出符合條件的三角形,只要在射線OA、OB上找到一對關(guān)于OP對稱的點(diǎn)就可以了。

      (2)利用上圖作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分線,AD、CE相交于F,請判斷FE與FD間數(shù)量關(guān)系。

      師:請同學(xué)們用三角尺和量角器準(zhǔn)確畫出此圖,然后量出EF、FD的長度,看看EF與FD長度

      關(guān)系如何?

      生:基本相等。

      生:長度相等。

      師:如何來證明他們相等?注意審題。

      同學(xué)們先獨(dú)立思考后,組內(nèi)交流,等到有同學(xué)舉手發(fā)言。

      生:在AC上取點(diǎn)H,使AH=AE,則△AEF≌△AHF則EF=FH

      師:為什么要這么做?你是怎么想到的?

      生:因?yàn)橐C明線段相等要考慮三角形全等,而EF、FD所在兩個(gè)三角形顯然不全等,又AD是平分線,在AC上找出E關(guān)于AD有對稱點(diǎn)H得到△AEF≌△AHF。

      師:這樣只能得到EF=FH。

      生:再證明△FHC≌△FDC。

      生:先求出AD、CE是角平分線∠APC=1200,則∠DPC=∠EPA=∠APH=600,所以∠HPC=

      ∠DPC=600,PC=PC,∠3=∠4,因?yàn)椤鱄CP≌△DCP(ASA)所以PD=PH。

     。ǹ辞孱}意,猜想結(jié)果是解決探究題的重要環(huán)節(jié),教師要留給同學(xué)們一定思考時(shí)間,同時(shí)鼓勵(lì)同學(xué)們嘗試和交流,鼓勵(lì)同學(xué)們勇于探索以及同學(xué)之間的合作。)

      師生共同小結(jié):

      1、熟記全等三角形的基本形態(tài),會(huì)找全等三角形的對應(yīng)邊和對應(yīng)角。

      2、在錯(cuò)綜復(fù)雜的幾何圖形中能夠?qū)ふ胰热切巍?/p>

      3、利用角平分線的對稱性構(gòu)造三角形全等,并利用三角形的全等性質(zhì)解決線段之間的等量關(guān)系。

      4、運(yùn)用全等三角形的'識別法可以解決很多生活實(shí)際問題。

      作業(yè)

      1、在例2中,如果∠ACB不是直角,而(1)中的其他條件不變,請問:你在(1)中所得結(jié)論能成立嗎?若成立,請證明,若不成立,請說明理由。

      2、書本課后復(fù)習(xí)題

      教學(xué)反思

      本教學(xué)設(shè)計(jì)從以下三方面考慮:

      1、根據(jù)同學(xué)們的學(xué)習(xí)情況,改進(jìn)同學(xué)們的學(xué)習(xí)方式,強(qiáng)調(diào)合作交流,探索學(xué)習(xí),教師在教學(xué)過程中,努力為同學(xué)們創(chuàng)設(shè)自主探索的氛圍,讓同學(xué)們真正成為課堂主體。

      2、重視對同學(xué)們能力的培養(yǎng),除常規(guī)的鼓勵(lì)就大膽思考,積極發(fā)言,重視培養(yǎng)同學(xué)們觀察、操作、測試、思考的能力,同學(xué)們的活躍,他們思考問題的方式是多種多樣,教師從對完全更改,尊重他們的學(xué)習(xí)方式,這樣有助于創(chuàng)新

      3、重視對同學(xué)們學(xué)習(xí)習(xí)慣的培養(yǎng),全等三角形是幾何部分內(nèi)容說明書,有較強(qiáng)邏輯性,教師板演,以及在同學(xué)們敘述中糾正同學(xué)們的錯(cuò)誤,是培養(yǎng)同學(xué)們養(yǎng)成良好的習(xí)慣之一,同時(shí)同學(xué)們學(xué)習(xí)習(xí)慣多方面的,在合作交流中,培養(yǎng)同學(xué)們合作意識和合作習(xí)慣培養(yǎng)顯得尤為重要。

      數(shù)學(xué)《全等三角形》教案 篇6

      課程內(nèi)容

      邊邊邊判定定理

      選用教材

      人教版數(shù)學(xué)八年級上冊

      授課人

      崔志偉

      授課章節(jié)

      第十二章第二節(jié)

      學(xué) 時(shí)

      1

      教學(xué)重點(diǎn)

      掌握全等三角形的判定定理邊邊邊,能運(yùn)用該定理解決實(shí)際問題。

      教學(xué)難點(diǎn)

      探索三角形全等的條件,以及運(yùn)用邊邊邊定理畫一角等于已知角

      教學(xué)方法

      學(xué)生合作探究法、教師講解結(jié)合談話法等綜合教學(xué)方法

      教學(xué)手段

      黑板板書教學(xué)

      課 堂 教 學(xué) 設(shè) 計(jì)

      階段

      教學(xué)內(nèi)容

      導(dǎo)入部分

      采用復(fù)習(xí)導(dǎo)入,教師首先提問學(xué)生回顧全等三角形的定義,以及全等三角形的性質(zhì)。

      學(xué)生在復(fù)習(xí)以上知識的條件下教師做出解釋,上節(jié)課我們已經(jīng)學(xué)習(xí)了三角形在滿足三邊對應(yīng)相等,三角對應(yīng)相等,則兩三角形全等,那么在實(shí)際的運(yùn)用過程中,需要這么多條件運(yùn)用會(huì)很不方便,那么我們很容易想到,能不能簡化條件,得出三角形全等呢?由此引出課題全等三角形的判定。

      階段

      課堂教學(xué)設(shè)計(jì)

      課程新授

      教師讓學(xué)生大膽想象,可以從一組對應(yīng)關(guān)系相等開始探究,逐步上升到兩組對應(yīng)關(guān)系相等三組對應(yīng)關(guān)系相等。

      但是為了節(jié)約時(shí)間,可以讓學(xué)生從兩組開始,如若兩組都不行,那一組肯定也不行,反之如若兩組條件就足夠了,再回頭看看一組的情況。

      接下來學(xué)生在教師的提問下思考二組對應(yīng)條件的所有可能的情況,預(yù)設(shè)會(huì)有思考不全面的同學(xué),教師即使揭示在一組邊與一組角相等的情況下,邊與角的關(guān)系可以為相鄰,也有可能為相對。

      學(xué)生在教師的提示下,探索發(fā)現(xiàn)滿足兩組對應(yīng)關(guān)系相等的三角形不一定全等,由此可以斷定一組對應(yīng)關(guān)系相等也不能作為判定三角形全等的條件。接下來直接考慮三組對應(yīng)相等關(guān)系的情況。

      首先引導(dǎo)學(xué)生對三組對應(yīng)關(guān)系相等進(jìn)行分類。

      預(yù)設(shè)學(xué)生部分可以全部考慮到,部分學(xué)生考慮不周到,這時(shí)教師可以請會(huì)的同學(xué)展示被同學(xué)忽略的情況即兩組角與一組對邊對應(yīng)相等時(shí),邊可以為對邊,也可以為鄰邊。

      本節(jié)課將引導(dǎo)學(xué)生探索三邊相等的情形,有了前面兩組對應(yīng)相等的經(jīng)驗(yàn),預(yù)設(shè)學(xué)生根據(jù)尺規(guī)作圖可以畫出三邊等于已知三角形的三角形,接下來通過三角形全等的定義,讓學(xué)生動(dòng)手操作進(jìn)行驗(yàn)證,發(fā)現(xiàn)可以完全重合,由此我們得到三組邊對應(yīng)相等的三角形全等。即SSS,教師解釋S為英文邊,side的首字母。

      接下來請同學(xué)說出已知三角形與所作三角形之間存在的對應(yīng)相等關(guān)系,預(yù)設(shè)學(xué)生可以很輕易說出。

      由此教師揭示,實(shí)際上我們還學(xué)回了一個(gè)做角等于一只角的另外一種做法,即運(yùn)用尺規(guī)作圖畫一角等于已知角。接下來,教師稍作解釋,請學(xué)生探究討論作圖步驟?凑l的最簡便。

      學(xué)生探索過后,教師請學(xué)生回答自己的作圖步驟,最后由教師板書最簡易的作圖步驟。

      之后我將用練習(xí)的方式,加深同學(xué)對邊邊邊判定定理的理解并加強(qiáng)應(yīng)用能力。

      作業(yè)

      作業(yè)為書上的練習(xí)第二題,以及課后作業(yè)的第四題對應(yīng)基礎(chǔ)性練習(xí)即鞏固性練習(xí)。

      板書設(shè)計(jì)

      采用歸納式的板書設(shè)計(jì),主要板書兩種即三種對應(yīng)關(guān)系相等的種類,邊邊邊判定定理的內(nèi)容以及畫一角等于已知角的步驟以及重要練習(xí)的過程。

      小結(jié)

      本結(jié)課內(nèi)容比較多,主要體現(xiàn)在全等三角形判定的探索過程,為了節(jié)約時(shí)間,我選擇讓學(xué)生直接從兩個(gè)條件開始探究,同時(shí)也不影響學(xué)生理解,教師主要以引導(dǎo)為主,學(xué)生自主探索學(xué)習(xí)。

      數(shù)學(xué)《全等三角形》教案 篇7

      【教學(xué)目標(biāo)】

      1.使學(xué)生理 解邊邊邊公理的 內(nèi)容,能運(yùn)用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;

      2.繼續(xù)培養(yǎng)學(xué)生畫圖、實(shí) 驗(yàn),發(fā)現(xiàn)新知識的能力.

      【重點(diǎn)難點(diǎn)】

      1.難點(diǎn):讓學(xué)生掌握邊邊邊 公理的內(nèi)容和運(yùn)用公理 的自覺性;

      2.重點(diǎn):靈活運(yùn)用SSS判定兩個(gè)三角形是否全等.

      【教學(xué)過程 】

      一、創(chuàng)設(shè)問題情境,引入新課

      請問同學(xué),老師在黑板上畫得兩個(gè)三角形,△ ABC與△ 全等嗎? 你是如何判定的.

     。ㄍ瑢W(xué)們各抒己見,如:動(dòng)手用紙剪下一個(gè)三角形,剪下疊到另一個(gè)三角形上,是否完全重合;測量兩個(gè)三角形的所有邊與角,觀 察是否有三條邊對應(yīng)相等,三個(gè)角對應(yīng)相等.)

      上一節(jié)課我們已經(jīng)探討兩個(gè)三角形只滿足一個(gè)或兩個(gè)邊、角對應(yīng)相等條件時(shí),兩個(gè)三角形不一定全等.滿足三個(gè)條件時(shí),兩個(gè)三 角形是否全等呢?現(xiàn)在,我們就一起來探討研究.

      二、實(shí)踐探索,總結(jié)規(guī)律

      1、問題1:如果兩個(gè)三角形的三條邊分別相等,那么這兩個(gè)三角形會(huì)全等嗎?做一做:給你三條線段 、 、 ,分別為 、 、 ,你能畫出這個(gè)三角形嗎?

      先請幾位同學(xué)說說畫圖思路后,教師指導(dǎo),同學(xué)們動(dòng)手畫,教師演示并敘述書寫出步驟.

      步驟:

      (1)畫一線段AB使 它的長度等于c(4.8cm).

     。2)以點(diǎn)A為圓心,以線段b(3cm)的長為半徑畫圓;以點(diǎn)B為圓心,以線段a(4cm)的長為半徑畫圓;兩弧交于點(diǎn)C.

      (3)連結(jié)AC、BC.

      △ABC即為所求

      把你畫的三角形與其他同學(xué)的圖形疊合在一起,你們會(huì)發(fā)現(xiàn)什么?

      換三條線段,再試試看,是否有同樣的 結(jié)論

      請你結(jié)合畫圖、對比,說說你發(fā)現(xiàn)什么?

      同學(xué)們各抒己見,教師總結(jié):給定三條線段,如果它們能組 成三角形,那么所畫的三角形都是全等的. 這樣我們就得到判定三角形全等的一種簡便 的方法: 如果兩個(gè)三角形的 三 條邊分別對應(yīng)相等,那么這兩個(gè)三角形全等.簡寫為“邊邊邊”,或簡記為(S.S.S.).

      2、問題2:你能用 相似三角形的判定法解釋這個(gè)(SSS)三角形全等的判定法嗎?

     。ㄎ覀円呀(jīng)知道,三條邊對應(yīng)成比例的兩個(gè)三角形相似,而相似比為1時(shí),三條邊就分別對應(yīng)相等,這兩個(gè)三角形不但形狀相同,而且大小都一樣,即為全等三角形.)

      3、問題3、你用這個(gè)“SSS”三角形全等的判定法解釋三角形具有穩(wěn)定性嗎?

     。ㄖ灰切稳叺拈L度確定,這個(gè)三角形的形狀和大小就完全確定)

      4、范例:

      例1 四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因?yàn)锳C是公共邊,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

      數(shù)學(xué)《全等三角形》教案 篇8

      【教學(xué)目標(biāo)】:

      1、知識與技能:

      1.三角形全等的條件:角邊角、角角邊.

      2.三角形全等條件小結(jié).

      3.掌握三角形全等的“角邊角”“角角邊”條件.

      4.能運(yùn)用全等三角形的條件,解決簡單的推理證明問題.

      2、過程與方法:

      1.經(jīng)歷探究全等三角形條件的過程,進(jìn)一步體會(huì)操作、?歸納獲得數(shù)學(xué)規(guī)律的過程.

      2.掌握三角形全等的“角邊角”“角角邊”條件.

      3.能運(yùn)用全等三角形的條件,解決簡單的推理證明問題.

      3、情感態(tài)度與價(jià)值觀:

      通過畫圖、探究、歸納、交流,使學(xué)生獲得一些研究問題的經(jīng)驗(yàn)和方法,發(fā)展實(shí)踐能力和創(chuàng)新精神

      【教學(xué)情景導(dǎo)入】:

      提出問題,創(chuàng)設(shè)情境

      復(fù)習(xí):

      (1)三角形中已知三個(gè)元素,包括哪幾種情況?

      三個(gè)角、三個(gè)邊、兩邊一角、兩角一邊.

      (2)到目前為止,可以作為判別兩三角形全等的方法有幾種?各是什么?

      三種:

      ①定義;

     、赟SS;

     、跾AS.

      2.[師]在三角形中,已知三個(gè)元素的四種情況中,我們研究了三種,今天我們接著探究已知兩角一邊是否可以判斷兩三角形全等呢?

      導(dǎo)入新課

      [師]三角形中已知兩角一邊有幾種可能?

      [生]1.兩角和它們的夾邊.

      2.兩角和其中一角的對邊.

      做一做:

      三角形的兩個(gè)內(nèi)角分別是60°和80°,它們的夾邊為4cm,?你能畫一個(gè)三角形同時(shí)滿足這些條件嗎?將你畫的三角形剪下,與同伴比較,觀察它們是不是全等,你能得出什么規(guī)律?

      學(xué)生活動(dòng):自己動(dòng)手操作,然后與同伴交流,發(fā)現(xiàn)規(guī)律.

      教師活動(dòng):檢查指導(dǎo),幫助有困難的同學(xué).

      活動(dòng)結(jié)果展示:

      以小組為單位將所得三角形重疊在一起,發(fā)現(xiàn)完全重合,這說明這些三角形全等.

      提煉規(guī)律:兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等(可以簡寫成“角邊角”或“ASA”).

      [師]我們剛才做的三角形是一個(gè)特殊三角形,隨意畫一個(gè)三角形ABC,?能不能作一個(gè)△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

      [生]能.

      學(xué)生口述畫法,教師進(jìn)行多媒體課件演示,使學(xué)生加深對“ASA”的理解.

      [生]①先用量角器量出∠A與∠B的度數(shù),再用直尺量出AB的邊長.

     、诋嬀段A′B′,使A′B′=AB.

     、鄯謩e以A′、B′為頂點(diǎn),A′B′為一邊作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

      ④射線A′D與B′E交于一點(diǎn),記為C′ 即可得到△A′B′C′.

      將△A′B′C′與△ABC重疊,發(fā)現(xiàn)兩三角形全等.

      [師]

      于是我們發(fā)現(xiàn)規(guī)律:

      兩角和它們的夾邊對應(yīng)相等的兩三角形全等(可以簡寫成“角邊角”或“ASA”).

      這又是一個(gè)判定三角形全等的條件. [生]在一個(gè)三角形中兩角確定,第三個(gè)角一定確定.我們是不是可以不作圖,用“ASA”推出“兩角和其中一角的對邊對應(yīng)相等的兩三角形全等”呢?

      [師]你提出的問題很好.溫故而知新嘛,請同學(xué)們來驗(yàn)證這種想法.

      【教學(xué)過程設(shè)計(jì)】:

      如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎?

      證明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

      ∠A=∠D,∠B=∠E

      ∴∠A+∠B=∠D+∠E

      ∴∠C=∠F

      在△ABC和△DEF中

      ∴△ABC≌△DEF(ASA).

      于是得規(guī)律:

      兩個(gè)角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等(可以簡寫成“角角邊”或“AAS”).

      [例]如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.

      求證:AD=AE.

      [師生共析]AD和AE分別在△ADC和△AEB中,所以要證AD=AE,只需證明△ADC≌△AEB即可.

      學(xué)生寫出證明過程.

      證明:在△ADC和△AEB中

      所以△ADC≌△AEB(ASA)

      所以AD=AE.

      [師]到此為止,在三角形中已知三個(gè)條件探索三角形全等問題已全部結(jié)束.請同學(xué)們把三角形全等的判定方法做一個(gè)小結(jié).

      學(xué)生活動(dòng):自己回憶總結(jié),然后小組討論交流、補(bǔ)充.

      有五種判定三角形全等的條件.

      1.全等三角形的定義

      2.邊邊邊(SSS)

      3.邊角邊(SAS)

      4.角邊角(ASA)

      5.角角邊(AAS)

      推證兩三角形全等,要學(xué)會(huì)聯(lián)系思考其條件,找它們對應(yīng)相等的元素,這樣有利于獲得解題途徑.

      練習(xí):圖中的兩個(gè)三角形全等嗎?請說明理由.

      答案:圖(1)中由“ASA”可證得△ACD≌△ACB.圖(2)由“AAS”可證得△ACE≌△BDC.

      【課堂作業(yè)】 1.如圖,BO=OC,AO=DO,則△AOB與△DOC全等嗎?

      小亮的思考過程如下.

      △AOB≌△DOC

      2、已知△ABC和△A′B′C′,下列條件中,不能保證△ABC和△A′B′C?′全等的是( )

      A.AB=A′B′ AC=A′C′ BC=B′C′

      B.∠A=∠A′ ∠B=∠B′ AC=A′C′

      C.AB=A′B′ AC=A′C′ ∠A=∠A′

      D.AB=A′B′ BC=B′C′ ∠C=∠C′

      3、要說明△ABC和△A′B′C′全等,已知條件為AB=A′B′,∠A=∠A′,不需要的條件為( )

      A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′

      4、要說明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,則不需要的條件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′

      5、兩個(gè)三角形全等,那么下列說法錯(cuò)誤的是( )

      A.對應(yīng)邊上的三條高分別相等; B.對應(yīng)邊的三條中線分別相等

      C.兩個(gè)三角形的面積相等; D.兩個(gè)三角形的任何線段相等

      6、如圖,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

      數(shù)學(xué)《全等三角形》教案 篇9

      教學(xué)目標(biāo):

      1、知識目標(biāo):

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;

      (3)會(huì)添加較明顯的輔助線.

      2、能力目標(biāo):

      (1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

      (2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

      3、情感目標(biāo):

      (1)在公理的形成過程中滲透:實(shí)驗(yàn)、觀察、歸納;

      (2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.

      教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。

      教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。

      教學(xué)用具:直尺,微機(jī)

      教學(xué)方法:自學(xué)輔導(dǎo)

      教學(xué)過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個(gè)數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個(gè)問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個(gè)元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個(gè)三角形全等?

      讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)

      公理:有三邊對應(yīng)相等的兩個(gè)三角形全等。

      應(yīng)用格式: (略)

      強(qiáng)調(diào)說明:

      (1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號把它們括在一起;寫出結(jié)論。

      (2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)

      (3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系

      (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應(yīng)用

      (1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評。

      例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架

      求證:AD⊥BC

      分析:(設(shè)問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1= 只要證什么?

      (3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

      證明:(略)

      (2)講解例2(投影例2 )

      例2已知:如圖AB=DC,AD=BC

      求證:∠A=∠C

      (1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

      (2)找學(xué)生代表口述證明思路。

      思路1:連接BD(如圖)

      證△ABD≌△CDB(SSS)先得∠A=∠C

      思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

      (3)教師共同討論后,說明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫出證明,一名學(xué)生板書,教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

      例3如圖,已知AB=AC,DB=DC

      (1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG

      (2)若AD、BC連接交于點(diǎn)P,問AD、BC有何關(guān)系?證明你的結(jié)論。

      學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路

      讓學(xué)生在練習(xí)本上寫出證明,然后選擇投影顯示。

      證明:(略)

      說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補(bǔ)角相等證兩直線的夾角等于 ,又是很重要的一種方法。

      例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

      求證:AC=2AE.

      證明:(略)

      學(xué)生口述證明思路,教師強(qiáng)調(diào)說明:“中線”條件下的常規(guī)作輔助線法。

      5、課堂小結(jié):

      (1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)

      在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。

      (2)三種方法的綜合運(yùn)用

      讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

      6、布置作業(yè):

      a、書面作業(yè)P70#11、12

      b、上交作業(yè)P70#14 P71B組3

    【數(shù)學(xué)《全等三角形》教案】相關(guān)文章:

    數(shù)學(xué)全等三角形教案02-24

    全等三角形數(shù)學(xué)教學(xué)教案02-26

    全等三角形數(shù)學(xué)教案02-09

    全等三角形的識別數(shù)學(xué)教案02-26

    數(shù)學(xué)教案全等三角形教學(xué)設(shè)計(jì)02-22

    中考數(shù)學(xué)復(fù)習(xí):全等三角形01-20

    數(shù)學(xué)教案直角三角形全等的判定02-20

    初中數(shù)學(xué)全等三角形知識點(diǎn)01-26

    八上數(shù)學(xué)十二章全等三角形教案學(xué)案習(xí)題02-27